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ABSTRACT 

 

Industrialization, production and consumption of fossil fuels, and land use changes have 

resulted in increased concentrations of carbon dioxide (CO2) and other greenhouse 

gases in the atmosphere causing changes in ecosystem structure and properties. Soil 

carbon (SC) sequestration, the process of storing CO2 in the soil through crop residues 

and other organic solids, has been an area under much investigation as it relates to 

reducing atmospheric carbon (C) and mitigating climate change. Since grasslands 

predominately sequester C below ground through root growth and consequent soil-

building processes, they have a high potential for long term C storage and therefore are 

of major importance for maintaining Earth’s carbon cycle. Despite advances in SC 

determination in recent years, it remains a challenge to model and map SC across large 

regions. There are several factors, both anthropogenic and environmental, that 

influence C sequestration. Given this complex system, I have used Geographic 

Information Systems (GIS) data in conjunction with accurate field measurements to 

examine the mechanisms that affect SC storage in order to produce predictive SC maps 

for the southern interior grasslands of British Columbia (BC).  Soil carbon prediction 

was based on the Normalized Difference Vegetation Index (NDVI), which has 

demonstrated high correlation with SC distribution in past studies.  The relationship of 

SC and NDVI was evaluated on two scales using: i) the MOD 13Q1 (250 m/16 day 

resolution) NDVI data product from the Moderate Resolution Imaging Spectro-

radiometer (MODIS) aboard the United States Terra satellite (NDVIMODIS), and ii) a 

handheld Multispectral Radiometer (MSR16R, Cropscan Inc., 1 m resolution) device 

(NDVIMSR). Other factors included in the model are: i) grazing, ii) climate data, iii) 

vegetation community zones, iv) soil classification and drainage, and v) topography.  A 

traditional linear stepwise regression (SR) modelling approach was compared with 

random forest (RF) modelling, a recursive partitioning technique that employs 

randomized bagging and bootstrapping of samples. There was a strong relationship 

between NDVI derived from the MSR with SC in fenced systems (R2=0.41), SOC in 

fenced systems (R2=0.47), and SOC in grazed systems (R2=0.34). When NDVI data 



iii 
 

 
 

derived from the MSR was used as model input, the percentage of explained variance 

was greater than for models which used NDVI derived from MODIS data (R2 = 0.68 for 

SC in 2014 for fenced systems, modelled with SR based on NDVI data derived from 

MODIS ; R2=0.77 for SC in 2014 for fenced systems, modelled with SR based on NDVI 

data derived from MSR). These results show the potential of increased model accuracy 

with higher resolution GIS data and the effectiveness of NDVI based models to predict 

SC and SOC.  Significantly higher SC and SOC was recorded in 2014 as compared to 2013 

(p=0.001 for SC and p=0.031 for SOC), demonstrating the potential for C sequestration 

in BC grasslands as a climate change mitigation tactic. Based on comparisons of R2 and 

AIC values, SR produces models that explain more variance and are of better quality 

(R2=0.49-0.77 and AIC = 0.30-0.13 for SR models in 2014; R2=0.36-057 and AIC = 0.36-

0.18).   This project creates the groundwork for effective monitoring techniques of SC 

and SOC levels using GIS data in order to develop a carbon offset program for the 

ranching industry and can be used to help direct land management efforts to increase C 

sequestration in BC.   

 

Keywords: carbon sequestration, climate change, soil carbon, random forest, stepwise 

regression, Normalized Difference Vegetation Index, predictive mapping 
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Chapter 1 : INTRODUCTION 

 

Due to the production and consumption of fossil fuels and land use changes, the 

concentration of carbon dioxide (CO2) and other greenhouse gases (GHG) in the 

atmosphere have been on the rise since the Industrial Revolution. The increases in 

GHGs intensify the process of climate change and in turn cause changes in ecosystem 

structure and properties (Hansen, 2008). Grasslands may be affected by these 

intensified processes through drought and erosion, a decrease in biodiversity, and 

ecosystem degradation (Winslow et al., 2003). Land use changes have simultaneously 

resulted in the depletion of soil and soil carbon (SC) levels, releasing 50 to 100 GT of 

carbon (C) from soil into the atmosphere due to reduced plant root material and 

residues returned to the soil, increased decomposition from soil tillage, and increased 

soil erosion (Lal, 2009; Wall and Six, 2015). Depletion of SC stocks has created a SC 

deficit that represents an opportunity to store C in soil through an assortment of land 

management approaches. Improved land management may reverse this deficit through 

the opposite process of SC sequestration. SC sequestration, the process of storing C in 

the soil through crop residues and other organic solids, has been an area under much 

investigation as it relates to reducing atmospheric CO2 and mitigating climate change. 

Soils with high C content are also associated with increased fertility, water retention, 

and vegetation (Schlesinger, 1999). 

The ability of soil to store C is dependent on many environmental factors (e.g. 

climate and landscape) and management practices (e.g. grazing). Grasslands and open 

forests grazed by livestock accounts for approximately 40% of British Columbia’s (BC) 

land base; hence, a large part of BC’s total SC pool is potentially affected by range 

management (Wikeem et al., 1993). Since grasslands predominately sequester C below 

ground through root growth and consequent soil-building processes, they have a high 

potential for long term SC storage and therefore are of major importance for 

maintaining earth’s C cycle (Parton et al., 1995). The process of C sequestration relies 
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on respiration and photosynthesis, two basic processes of the C cycle.  Carbon may also 

enter the soil in the form of roots, litter, harvest residues, and animal manure. These 

inputs also contribute to the SC sink and are stored as soil organic matter (SOM). In 

many areas, poor land use management can upset this process, thereby causing a net 

emission of C. Therefore, monitoring SC stocks is an important task to maintain 

grassland ecosystem function, support the cattle industry, and mitigate global climate 

change.  

DEFINING SOIL CARBON AND ITS COMPONENTS 

SC can be either organic or inorganic. Inorganic C consists of elemental C and carbonate 

materials such as calcite, dolomite, and gypsum (Lal, 2004).  Soil organic carbon (SOC) 

includes plant, animals, and microbial residue in all stages of decomposition. Physically 

defined fractionations of SOC pools are delineated into two groups: the light fraction 

and the organo-mineral (Figure 1.1). The light fraction is not combined with mineral 

matter and has a high turnover rate. Once transformed by bacterial action, the majority 

of SOC is transformed and found in clay or silt sized organo-mineral complexes. Finally, 

a small portion of SOC is represented in microbial biomass, which mediates the transfer 

of SOC among inputs. The rates of transfer and transformations are influenced by 

biologically important factors including soil moisture and temperature.  
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Figure 1.1: Mineralization and transfer of organic matter in soil (Christensen, 1996). 

 

ADVANCES IN SOIL CARBON MONITORING 

The traditional method of quantifying SC in the lab is the Walkey-Black (1934) 

method which uses a dry combustion technique of soil core samples. This method has 

notable limitations, being both time consuming and labor intensive (Gehl and Rice, 

2007). Determination of total C by dry combustion, the measurement of CO2 emitted 

from the oxidation of organic C and thermal decomposition of carbonate materials 

using an elemental analyzer (Nelson and Sommers, 1996), has become the predominant 

means of laboratory C analysis and was the method used in this project. However, some 

laboratories base C measurements on weight change rather the CO2 emitted, presenting 

discrepancies in laboratory results from different areas (McCarty et al., 2002). In 

general, laboratory analysis of soil samples for C determination is too time consuming 

and costly for a constant monitoring system for SC over large spatial regions, such as 
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the province of BC. Hence, ongoing investigations of remotely sensed (RS) monitoring 

systems for SC are critical.  

Recently, several advanced, non-invasive methods have been utilized for SC 

research. Mid-infrared reflectance (MIR) and near-infrared reflectance (NIR) 

spectroscopy have each been assessed as a means to predict soil properties, including C 

content (Chang and Laird, 2001; McCarty et al., 2002). Reflectance spectroscopy 

provides a rapid and non-destructive method to indirectly determine SC based on 

diffusely reflected radiation of illuminated soil (Gehl and Rice, 2007). By comparing the 

spectral signature of soil samples with known SC contents, inferences can later be made 

about soils with similar properties. For example, regarding clay soils examined in a 

recent study, samples with high SC exhibited stronger absorption in the Vis-NIR spectra 

(Figure 1.2). The distribution of soils’ reflectance over a spectrum of wavelengths 

creates identifiable characteristics – a spectral signature.  
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Figure 1.2 Spectral signatures of soil from various texture classes and soil C content 
(Yang and Mouazen, 2012). Note the peaks at 1414, 1814, and 2208 wavelength of the 

sample with the highest soil carbon content. 
  

Constituents of organic matter each have unique absorptive or reflective 

properties due to stretching and bending vibrations of molecular bonds between 

elements (Gehl and Rice, 2007). Spectral signatures related to the various components 

of soil organic matter generally occur in the MIR (2.5–25 μm) range, although small 

overtones and combinations of fundamental vibrations occur in the NIR (0.7–2.5 μm) 

region (Shepherd and Walsh 2002). Field analysis of SC using spectral analysis 

minimizes soil disturbance while increasing expedience of analysis for C. Advanced 

spectral field methods of SC analysis should be capable of providing repetitive, 

successive measurements for evaluation at a finer spatial and temporal scale than 

previously feasible (Gehl and Rice, 2007).  

Since different objects reflect radiation differently, the unique spectral 

reflectance curves (spectral signatures) of each object can be obtained, collected, and 
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used for identification. This collection is called a spectral library. Using the correlation 

between SC and reflectance, a proximity based model in the spectral dimensions can be 

used to predict the SC content of an unknown sample. Using this concept, Bartholomeus 

et al. (2008) concludes it was possible to use spectral indices derived from laboratory 

measurements to predict SC in various soil types. However, a large variance within the 

spectral library in SC is required for the calibration of the prediction model, since 

extrapolation beyond the SC range in the training dataset results in large errors 

(Bartholomeus et al., 2008).  Comparing SC results from laboratory analysis and field 

spectroscopy would assist the transition towards less invasive methods. Still, this 

method is limited in its ability to be applied to large spatial and/or temporal domains 

due to the time and costs associated with field analyses.  

The theoretical basis for empirical-based vegetation indices is derived from 

examination of typical spectral reflectance signatures of leaves (Figure 1.3). The 

reflected energy in the visible spectrum is very low as a result of high absorption by 

photosynthetically active pigments, with maximum absorption values in the blue (470 

nm) and red (670 nm) wavelengths. Nearly all of the near-infrared radiation (NIR) is 

scattered (reflected and transmitted) with very little absorption, in a manner 

dependent upon the structural properties of a canopy (LAI, leaf angle distribution, leaf 

morphology). As a result, the contrast between red and NIR responses is a sensitive 

measure of amount of vegetative land cover.  

Remote sensing methods have also been used to predict SC by modelling 

methods focused on vegetation indices. Vegetation Indices (VIs) are combinations of 

surface reflectance at two or more wavelengths designed to highlight a particular 

property of vegetation, and they are commonly used as a surrogate for plant biomass. 

The distribution of SC has been proven to highly correspond with Normalized 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) (Zhang et al, 

2012; Yang et al., 2008).  Though other VIs exist, NDVI and EVI data products are freely 

available from satellite-borne instruments, such as the Moderate Resolution Imaging 

Spectro-radiometer (MODIS), and offer a helpful addition to SC prediction models.  
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Figure 1.3: What is Imaging Spectroscopy? (Modified from: Elowitz, 2014). 

The Normalized Difference Vegetation Index (NDVI) is a normalized transform of 

the near infrared (𝑁𝐼𝑅) to red reflectance (𝑅𝑒𝑑 ) ratio (Equation 1). The formula for 

NDVI is: 

 NDVI =
𝑁𝐼𝑅−𝑅𝑒𝑑

 𝑁𝐼𝑅+𝑅𝑒𝑑
          (1) 

The Enhanced Vegetation Index (EVI) incorporates the atmospheric resistance concept, 

along with the removal of soil-brightness induced variations in VI (Equation 2). 

Additionally, EVI decouples the soil and atmospheric influences from the vegetation 

signal by including a feedback term for simultaneous correction. The formula for EVI is: 

EVI = 𝐺 ∗
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝐶1∗𝑅𝑒𝑑−𝐶2∗ 𝑏𝑙𝑢𝑒+𝐿 
        (2) 

where x are the full or partially atmospheric-corrected (for Rayleigh scattering and 

ozone absorption) surface reflectance; L is the canopy background adjustment for 



8 
 

 
 

correcting nonlinear, differential NIR and red radiant transfer through a canopy (L=1); 

C1 and C2 are the coefficients of the aerosol resistance term (which uses the blue band 

to correct for aerosol influences in the red band) (C1=6, C2=7.5,); and G is a gain or 

scaling factor (G=2.5). 

EVI data has been used to estimate SOC storage in alpine grasslands in China and 

it was found that growing season EVI from MODIS datasets  (500 m/16 day resolution) 

was strongly correlated with above ground biomass and SOC (Yang et al., 2008).   A net 

ecosystem production (NEP) model using a piecewise regression tree approach was 

developed based on NDVI data from IKONOS (2m resolution), weather data sets, and 

NEP data from flux towers to produce a high accuracy result (r=0.88) (Zhang et al. 

2012).  

Despite advances in SC determination in recent years, it remains a challenge to 

model and monitor SC over large regions such as BC. There are several factors, both 

anthropogenic and environmental, that influence carbon sequestration. Given this 

complex system, the possibility of using RS applications in conjunction with accurate 

field measurements is a topic of much interest. Ideally, hybridization of both techniques 

will generate an updateable, efficient province-wide model.  

RATIONALE AND RESEARCH AIMS 

In order to promote the use of ranching techniques which have the greatest 

potential for carbon storage, rangeland carbon offsets should be viewed as an effective 

way for ranchers to be compensated for sustainable practices. Improving ranching 

management to optimize C sequestration and implementing a C offset program would 

address sustainable ranching practices. This improved system can also provide a 

unique revenue source for the ranching industry in BC. The implementation of such a 

program would be a remarkable advancement in the ranching industry in BC, 

improving economic sustainability, and offering the potential for increased C 

sequestration, improving environmental sustainability.  
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This thesis is part of the “Soil carbon sequestration in grasslands1” collaborative 

project in the Fraser Lab at Thompson Rivers University, which aims to investigate soil 

carbon storage potential in BC rangelands with respect to sustainable ranching 

practices. There are three streams of the project: i) grazing management and SC 

sequestration, ii) modelling SC in BC with respect to climatic, topographic, and 

vegetation differences, and iii) economical modelling of SC stocks for the ranching 

industry. Focusing on the second stream of the collaborative, my thesis will contribute 

the ecological background for economic modelling. Since we expect SC and SOC 

potential to vary throughout BC, it would be unfair to expect the same rates of SC 

sequestration from 2 different ranches. Before we assess how ranchers should be 

compensated for sustainable land management practices, we must know what SC stocks 

are expected at the undisturbed state of the land and what SC sequestration rates are 

possible.  

While research has been conducted on the ability of pastures to sequester C and 

reduce GHG emissions (Franzluebbers, 2010), the proposed project will tackle the 

remaining challenges to develop protocols that include the implementation of 

sustainable range management and subsequent measurement and monitoring of 

carbon sequestration (Fynn et al., 2009). The first step to monitoring and improving 

sustainable ranching techniques is getting a better understanding of how various 

anthropogenic and environmental processes affect SC storage. Hence, the main 

objective of this research is to compare modelling techniques and identify optimal input 

variable combinations in order to most effectively map SC in BC grasslands.  

 

  

                                                        
1 This project is a research initiative at the Fraser Lab, Thompson Rivers University, Kamloops, BC, 
Canada. See website for more information: https://grazingmgtandclimatechange.wordpress.com/ 

https://grazingmgtandclimatechange.wordpress.com/
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Chapter 2 : MODELLING SOIL CARBON IN THE GRASSLANDS 

OF BRITISH COLUMBIA’S SOUTHERN INTERIOR 

 

INTRODUCTION 

CATTLE GRAZING AND SOIL CARBON 

Despite the importance of rangelands for soil carbon (SC) storage, the impact of 

grazing on carbon (C) sequestration is not fully understood. Overgrazing can lead to 

poor range health and reduce the potential for rangelands to sequester C in the soil 

(Chapman and Lemaire, 1993). It is widely accepted that overgrazing is detrimental to 

plant communities due to grazing and trampling which may lead to a loss in species 

diversity, reduced vegetation biomass and density, and an increase in undesirable non-

native invasive plants which thrive in disturbed ecosystems (Chapman and Lemaire, 

1993). Grazing may also affect hydrology and soil properties such as increased soil 

erosion, reduced water infiltration and soil compaction, and lower soil quality and 

fertility (Schlesinger et al., 1990; Bremer, 2001).   

On the other hand, recent research in the United States and in the southern 

interior of British Columbia (BC) suggests that moderate grazing may increase soil 

building processes and SC storage by increasing compensatory growth of forage grasses 

and turnover of plant roots, better facilitating soil development (Loeser et al.,  2007; 

Schönbach et al.,  2011). Light grazing may improve shoot turnover compared to fenced 

conditions (Schuman et al., 1999).  Further, aboveground immobilization of C in 

standing dead plant material in fenced areas may lead to lower SC observed (Schuman 

et al., 1999).  

A recent paper examining long term grazing effects of SC in upper grasslands of 

BC’s Southern Interior determined that rough fescue above-ground and litter biomass 

were greater on fenced than grazed treatments, though this did not create differences in 

SC, which was similar on plots both with and without grazing (Krzic et al., 2014).  
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Another study carried out on bluebunch wheatgrass grasslands in the southern interior 

of BC (Evans et al., 2012) also reported that the long-term elimination of grazing did not 

lead to an increase of SC relative to the grazed pastures. In contrast, Schuman et al. 

(1999) found that 12 years of season-long cattle grazing at 0.67 and 2 AUM (animal unit 

months) per hectare led to 21 and 22% significantly higher total SC, respectively 

relative to non-grazed pasture. This increase in SC under grazing conditions was 

attributed to the increase in blue grama cover, a species which is known to develop a 

dense and continuous root mass in the upper soil layer and allocate more C and 

nutrients to roots than other species commonly found in the mixed-grass prairie. In a 

global review, Conant and Paustian (2002) found that of the studies they researched 

that showed increased soil organic matter (SOM) with higher grazing intensities, half of 

the sites contained blue grama grass. In their global review, it was also concluded that 

most C sequestration was located in areas that were lightly or moderately grazed, while 

only a small amount was located in strongly grazed grasslands (Conant and Paustian, 

2002).  

Evidently, previous studies have found both strong positive and negative grazing 

effects on SC. These contradicting results are explained by McSherry and Ritchie’s 

(2013) conclusion that grazer effects on soil organic carbon (SOC) are highly context-

specific and their causations interrelated.  For instance, in their international study it 

was found that increasing grazing intensity increased SOC by 6-7% on C4-dominated 

and C4-C3 mixed grasslands but decreased SOC by an average 18% in C3-dominated 

grasslands (McSherry and Ritchie, 2013). Note that the native bunchgrasses in BC are 

C3 grasses (cool season grasses) while C4 grasses (warm season grasses) are less 

common and restricted to zeric habitats (Gayton, 2013).  

My project compared the effect of long term grazing, in a similar fashion as Krzic et al. 

(2014), by sampling in grazed and fenced areas, separated by a permanent fenced 

exclosure (established for ~30 years, on average).  Since there are over 60 sites 

included where exclosures have been in place for an upwards of 75 years, historical and 

current grazing practices are unknown at these locations.  However, because of their 
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distribution throughout BC, these sites encompass a variety of vegetation, soil, and 

climatic conditions.  

ENVIRONMENTAL FACTORS AND SOIL CARBON 

Climate and Topography 

The environmental variables that influence SC are often interconnected and 

relate to the productivity and stability of a landscape. Conant and Paustian (2002) 

modelled potential SC sequestration in overgrazed grassland ecosystems and 

established a positive linear relationship between potential SC sequestration and mean 

annual precipitation (MAP). The regression model predicted losses of SC with 

decreased grazing intensity in drier areas (MAP<  333 mm/ yr) but substantial 

sequestration in wetter areas; most (93%) C sequestration potential occurred in areas 

with MAP less than 1800 mm (Contant and Paustian, 2002).  

Likewise, low-lying south facing slopes are typically drier therefore I expect 

aspect and elevation to be useful indicators as well. Since areas on steeper slopes may 

be more likely to experience erosion, I expect steep slopes to help indicate regions with 

low SC.  

Soil Properties 

Within BC’s grasslands there was a diversity of soil types, encompassing several 

groups of the Canadian Soil Classification System which mark the differences in many 

soil characteristics including organic matter content, drainage, litter production, and 

soil texture. These characteristics influence SC directly and indirectly by affecting 

productivity, drainage, and stability. A study by Bhatti et al. (2003) has successfully 

used soil classifications to improve predictability of SC models. Specifically, the SC 

estimates were based on data from (i) analysis of pedon data from both the Boreal 

Forest Transect Case Study (BFTCS) area and from a national-scale soil profile 

database; (ii) the Canadian Soil Organic Carbon Database (CSOCD), which uses expert 

estimation based on soil characteristics; and (iii) model simulations with the Carbon 
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Budget Model of the Canadian Forest Sector (CBM-CFS2) (Bhatti et al., 2003).  In 

McSherry and Ritchie’s (2013) recent study, an increase in MAP of 600 mm resulted in a 

24% decrease in ‘grazer effects’ on SOC for finer-textured soils, while the same increase 

in precipitation over sandy soils produced a 22% increase in ‘grazer effects’ on SOC. 

Vegetation and Vegetation Indices 

The abundance of organic C in the soil affects and is affected by plant production. 

Specifically, shoot/root allocations combined with vertical root distributions of 

different functional groups (e.g. grasses, shrubs, trees) have been found to affect the 

distribution of SOC with depth (Jobbágy and Jackson, 2000). Also, the presence of C4 

grass and legume species was a key cause of greater soil C and N accumulation in both 

higher and lower diversity plant assemblages because legumes have unique access to N, 

and C4 grasses take up and use N efficiently, increasing below-ground biomass and thus 

soil C and N inputs (Fornara and Tilman, 2008). Past research has determined that the 

distribution of SC is related to Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI), spectral indices compute from remote sensing (RS) 

data, which indicate the amount of green biomass present (Zhang et al., 2012; Yang et 

al., 2008).   

DECISIONS TREES 

To determine the appropriate set of input variables to be used to predict a 

certain characteristic, such as SC, regression analysis is commonly used. Though linear 

stepwise regressions (SRs) are classically used, decision trees (DT) are an alternative 

method for determining the interaction between variables and/or the independence of 

variables. For this research, I will compare SR with random forest (RF) models, a type of 

DT.  

Decision tree induction is a supervised machine learning method that constructs 

a tree-based classifier based on a training dataset.  In supervised learning, the input 

variable values (called attributes) are provided along with the observed response 
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variable for each example in the training dataset.  The DT classifier has a flowchart-like 

tree structure, where each internal node (non-leaf node) denotes a test on an attribute, 

each branch represents an outcome of the test, and each leaf node (or terminal node) 

holds a class (Figure 2.1).  The topmost node in a tree is called the root node and 

identifies the most important input attribute while the nodes further down the tree are 

of lesser importance with each step down.  Each terminal node contains a class label 

that is the expected outcome, based on the training dataset, of the unique combination 

of attribute values that define the path from the tree root to its leaf (Figure 2.1). To 

create a DT, a recursive partitioning method based on the information content of each 

input attribute in the dataset is used to produce the tree model.  This method 

determines which of the input variable fields does the best job splitting the data. Then, 

it repeats the process for each sub-set until an end condition is reached.  The splitting of 

the data is performed using an information-based metric to identify the splitting 

criterion that creates the most homogeneous data subsets following the split (Therneau 

and Atkinson, 2013).    

 

Figure 2.1 : Decision Tree layout (Han and Kamber, 2006). 

Because of their natural graphical representation, DT models facilitate human 

understanding and interpretation via visual analysis (Therneau and Atkinson, 2013).  
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At the same time, DTs are fairly robust and typically perform well even with large data 

sets with different types of values (categorical, numerical, ranking) (Therneau and 

Atkinson, 2013).  Furthermore, DT models are inherently non-linear and are robust to 

datasets that exhibit multicollinearity among the predictive variables (Therneau and 

Atkinson, 2013).    

Random Forests 

Random forest is an ensemble learning method for regression, that is based on 

the construction of many DTs (referred to as a ‘forest‘of DTs) during training.  Random 

forest prediction is the expected value of the distribution of output values from trees 

within the forest.  In the case of real-valued output, this value is calculated as the mean 

prediction of the individual trees.  Although DT training may create models that are too 

specific to the training data and do not generalize well, a condition known as over-

fitting, RFs correct for this tendency by bagging and bootstrapping the training data and 

by incorporating some randomness in selecting the attribute to split on.  Each tree is 

built from a bootstrap sample of the original data set, which allows for robust error 

estimation with the remaining data, referred to as the ‘Out-Of-Bag’ (OOB) data.  This is 

accomplished by predicting each example within the OOB data using a RF that was 

constructed from the bootstrap training samples.  By aggregating the OOB predictions 

from the all trees within the RF, the mean square error of the prediction is then 

calculated (MSEOOB) as: 

𝑀𝑆𝐸𝑂𝑂𝐵 =  𝑛−1 ∑ (𝑧𝑖 − 𝑧𝑖
𝑂𝑂𝐵)2𝑛

𝑖=1         (3) 

 

Where 𝑧𝑖 is the ith OOB prediction and  𝑧𝑖
𝑂𝑂𝐵 is the average of n OOB predictions for the 

ith observation,  𝑀𝑆𝐸𝑂𝑂𝐵 is normalized as it depends on the unit of response variable 

and the percentage of explained variance (Varex) is calculated in Equation 4: 

 𝑉𝑎𝑟𝑒𝑥 = 1 −  
𝑀𝑆𝐸𝑂𝑂𝐵

𝑉𝑎𝑟𝑧
          (4) 
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Where Varz is the total variance of the response variable. This is the goodness of fit.  

The result of the RF is one single prediction which is the average of all the 

aggregations. One disadvantage of RF is that it is challenging to interpret a relationship 

between the input and response variables because so many DTs are produced in the 

forest, limiting the interpretation of the relationships between the response and then 

input variables. To explain these relationships, RF outputs an estimation of variable 

importance measured by the decrease in prediction accuracy before and after 

permuting a variable (‘%incMSE’).  

OBJECTIVES 

The main objective of this project is to evaluate the factors which influence SC 

using SR and RF modelling in order to subsequently map SC throughout BC’s 

grasslands. We will compare various factors which influence SC values from 65 sites 

across BC’s southern interior and have undergone total C determination by dry 

combustion using an automated elemental analyzer. Input factors evaluated in the 

model include: i) grazing; ii) climate zones based on historical temperature and 

precipitation data; iii) landscape variables including aspect, soil, and elevation; iv) 

Normalized Difference Vegetation Index imagery (MOD13Q1- 250m, 16day resolution); 

v) vegetation community zones; and vi) soil classifications within BC. The work 

conducted for this project will lay the basis for effective monitoring techniques of SC 

levels by using remote sensing (RS) techniques and explore the possibility for the 

implementation of a carbon-offset program for ranchers in BC. Specifically, the research 

questions to be covered in this chapter include: 

 

i. What environmental and anthropogenic factors allow us to best predict 

SC? 

ii. How is SC distributed across BC grasslands? 

iii. What factors control sensitivity to grazing in regards to SC? 

iv. What factors indicate high potential to store C with time? 



19 
 

 
 

v. How do SR models compare to RF models? 

vi. How does increased resolution of NDVI data improve modelling? 
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METHODS 

EXPERIMENTAL DESIGN AND STUDY SITES 

Grasslands are a small but significant component of British Columbia’s (BC) 

natural landscape. They are an important habitat for many wildlife species and support 

the ranching industry. Roughly 90% of BC's grasslands are grazed by domestic 

livestock, either through deeded private rangelands, grazing tenures on provincial 

crown land or grazing regimes on First Nations land (BC Grasslands Conservation 

Council, 2004).  To capture the climatic, topographic, and vegetative differences 

throughout the grasslands of BC, 65 sites across the province were used to collect 

samples (Figure 2.2; see Appendix A for list of site locations, code names, and 

coordinates). In order to compare the effect of long term grazing, samples were taken at 

Range Reference Areas (RRAs) (Figure 2.3). RRAs are permanent fencing installations 

which are used to monitor the impact of livestock on BC rangelands and evaluate the 

accuracy of potential natural (climax) communities (PNC) estimates. These RRAs have 

been in place for 20-50 years and can therefore be used to identify the long term 

impacts of grazing; however, there is no information available on grazing intensity (e.g. 

stocking rates) or management practices at these sites. Hence, grazing is represented in 

2 treatments -- grazed and fenced (fenced) (Figure 2.4). The sites cover a variety of 

local climates, plant communities, and physiographies. Among the sites, elevation 

ranges from 346 to1213 m and MAP ranges from 302mm/year to 538mm/year.  Once 

analyzed, the SC and SOC values at these sites were used as training and testing data to 

construct and evaluate the SR and RF models.  
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 Figure 2.2: Sample site locations of Range Reference Areas within 5 grassland regions of the 

South-Central Interior. 
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Figure 2.3: Examples of Range Reference Areas sites at a) Alkali Creek, Chilcotin Region; 
b) Lac du Bois, Thompson-Nicola Region; and c) Crump, Okanogan Region. 
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Figure 2.4: Sampling design at Range Reference Area exclosures. 
 

FIELD METHODS 

At each RRA location, samples were collected at 2 sites: in grazed (outside 

exclosure) and non-grazed (inside fencing) areas (Figure 2.4). At each site, 5 30 cm 

deep holes were augured within a 5 m x 5 m plot. Using 2 of these holes, the removed 

soil was collected for bulk density (BD) analysis. Each of the 5 holes were used to collect 

soil C samples by scraping soil from the walls of the hole at each depth increment (0-10 

cm, 10-20 cm, 20-30 cm). Vegetation analysis of cover class and dominant species was 

recorded within each 5 m x 5 m plot; however, this data was not used for modelling 

because the vegetation data collected was not strongly correlated to the SC or SOC and 

there was no equivalent available from a remotely sensed sourced therefore the data 

could not be used for mapping. Instead, vegetation community was derived from a GIS 

layer published by the Grasslands Conservation Council of BC (see ‘Data’ section below).  

Photos were taken and landscape variables were measured (slope with clinometer, 

elevation with GPS, aspect by sight). During the second field season, a DLC Multispectral 

Radiometer (MSR16R, CROPSCAN Inc.) was used to determine spectral reflectance (5 

replicates per site).   
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BIOGEOCHEMICAL ANALYSIS  

The soil samples were dried, sifted through a 2 mm sieve, and weighed on an 

analytical scale before analysis through an automated elemental analyzer (CE-440 

Elemental Analyzer, Exeter Analytical Inc.) was used to determine C percent by thermal 

conductivity detection. Three of the five samples were run through the analyzer 

individually (not bulked). If the deviation between the 3 samples was too high, the 

additional 2 samples were run as well. SC% values from the elemental analyzer were 

then converted to carbon density: 

Carbon density (g/cm3 ) = bulk density (g/cm3 ) × percent carbon (%)  (5) 

To determine dry soil BD of all samples, Equation 6 was applied. : 

 Bulk density 2013 (cm3) =  
mass of dry soil (g) – mass of rocks (g)

volume of core (cm3)− volume of rocks(cm3)
   (6) 

Volume of rocks = mass of rocks (g) × standard rock density (g/cm3 )   (7) 

Where rock mass was mass of total dry soil (g) subtracted by the mass of sieved dry soil 

(g) and the standard rock density was 2.65 g/cm3 (Daly, 1966). To determine the mass 

of dry soil, all samples were dried in a constant temperature oven (DKN818, Yamato) 

and weighed with a top loading scale. To determine the mass of sieved dry soil the 

samples were sifted through a 2 mm sieve to remove rocks, and weighed again.  

The Loss on Ignition (LOI) technique was used to determine the organic matter 

content in the soil samples. Following Wang et al. (2012), approximately 5 g of soil was 

placed in a weighed aluminum sample boat, heated at 105°C in a constant temperature 

oven (DKN818, Yamato) for 12 hours to remove soil moisture, then weighed with an 

analytical scale. Next, the soil was ignited in a programmable muffle furnace (F26700, 

Barnstead International) at 500°C for 5 hours, left in desiccator for 2 hours until room 

temperature, and weighed again. Soil organic matter (SOM) was calculated as the 

weight loss between 105°C and 375°C:  
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𝑆𝑂𝑀𝐿𝑂𝐼(𝑔𝑘𝑔−1) =  
𝑊𝑒𝑖𝑔ℎ𝑡105𝐶 − 𝑊𝑒𝑖𝑔ℎ𝑡 500𝐶 

𝑊𝑒𝑖𝑔ℎ𝑡105𝐶
 × 1000      (8) 

Using Wang et al.’s (2012) conversion factors, SOC may be calculated from SOM LOI 

using Equation 9: 

𝑆𝑂𝑀𝐿𝑂𝐼 =  
𝑆𝑂𝑀𝐿𝑂𝐼 – 4.189

1.792 
         (9) 
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DATA 

Data Sources 

Several datasets were used to model and map SC and SOC (Table 2.1 and Figure 

2.5).  NDVI data derived from the Multi-Spectral Radiometer (NDVIMSR) was used to 

model SC and SOC in order to demonstrate the increased modelling accuracy when 

using smaller scale spectral measurements; however this data could not be used for 

predictive mapping since NDVIMSR does not cover the grasslands province-wide.  

Models that included NDVIMSR data were not mapped because MSR data does not have 

province-wide coverage.  

Pre-processing 

The tiles which comprised the NDVIMODIS layer required significant pre-

processing. The appropriate tiles were downloaded, projected in to the BC Albers Equal 

Area projection, and subsequently mosaicked into province-wide layers.  A mosaic was 

produced for each 16 day composite, resulting in 69 layers from 2011-2013. To smooth 

out noise in NDVI data that is caused primarily by cloud contamination and 

atmospheric variability, layers were stacked sequentially and a pixel-by-pixel 

computation smoothed NDVI data over the 3 year time series using a Loess smoothing 

function.  These functions were extremely time-consuming; for example, the smoothing 

function ran continuously for 3 weeks. Fortunately, to update models in the future as 

new NDVIMODIS data is released, these pre-processing steps can be easily reproduced 

with R code (Appendix B).  
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Table 2.1: GIS for soil carbon modelling and mapping. 
Layer Name  Description (Year Created) Format 

(Resolution) 
Publisher 

MAP  The average annual precipitation in millimetres 
for the period 1961 to 1990 (2005) 
 

Raster  
(2.5 arc min) 

Ministry of Forests and 
Range, Research Branch  

MAT  The average temperature for the entire year in 
degrees Celsius for the period 1961 to 1990 
(2005) 
 

Raster  
(2.5 arc min) 

Ministry of Forests and 
Range, Research Branch  

Soil Type Soil Development type derived from Soil 
Landscapes of Canada data (2008) 
 

Vector Agriculture and Agri-
Food Canada  

Soil Drainage Describes the removal of water from the soil; 
derived from Soil Landscapes of Canada data 
(2008) 
 

Vector Agriculture and Agri-
Food Canada  

Vegetation 
Community  

Vegetation community zones  
derived from Biogeoclimatic Ecosystem 
Classification zones (2004) 
 

Vector Grasslands 
Conservation Council of 
British Columbia 

Aspect, Slope, 
Elevation 

Topographic layers derived from gridded DEM 
created by the Terrain Resource Information 
Management program (2002) 
 

Raster 
(1:20,000) 

Base Mapping and 
Geomatic Services  

NDVIMODIS Satellite derived Normalized Difference 
Vegetation Index  data (16 day/ 250 m 
resolution) from Moderate-resolution Imaging 
Spectro-radiometer (MODIS) satellite, MOD13Q1 
product (2012-2014) 

Raster 
(250m) 

USGS, MODIS Terra 
Land Processes 
Distributed Active 
Archive Center 
directory 
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Figure 2.5: GIS data layers for soil carbon modelling and mapping including: a)Mean Annual Precipitation (MAP), b) Mean 
Annual Temperature (MAT), c) Soil Type, d) Soil Drainage, e) Vegetation Community, f) Aspect, g) Slope, h) Elevation, and i) 

Normalized Difference Vegetation Index (NDVI) 
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Note that given the 250 m pixel size, one MODIS pixel likely covers, at least 

partially, grazed and fenced areas at one location. In contrast, the MSR readings were 

taken separately for grazed and fenced areas. 

All other layers were pre-processed using Model Builder in ArcGIS (Figure 2.6 

shows Model Builder flowchart – in Modelling Section).  Layers were re-projected if not 

already projected in the BC Albers Equal Area projection. Since the data was skewed, it 

was transformed using ln(n+1) to normalize it. The “+1” was used because some data 

points were originally zero and would create an error.     

STATISTICAL ANALYSIS 

Study design allowed for paired t-tests and one-way analysis of variance 

(ANOVA) tests using depth and region as factors to be tested on the grazed and fenced 

data from 2013 and 2014. No interactions were analyzed. Since data were ln(n+1) 

transformed, the ANOVA assumption of equality of variances was met. Post-hoc Tukey’s 

HSD tests were performed on the data after ANOVAs if there were significant treatment 

effects.  All analyses were performed using R (version 3.0.2) (R Development Core 

Team 2014) and the R package ‘car’ (Fox and Weisberg 2011).  

MODELLING AND MAPPING 

Data was randomly divided into training and testing data. Two thirds of the sites 

were assigned as training data and one third was assigned as validation data. All factors 

affecting SC levels were evaluated simultaneously with the RF and SR, using the training 

data. The models were validated by predicting outcomes for the validation data-set and 

comparing with the observed data, to calculate a Mean Square Error (MSE) value.  

Goodness of fit was evaluated with adjusted R2 for SR models and percent variance 

explained for RF models. The best SR models were selected automatically via forward-

backward stepwise regression with the ‘step.lm’ function in R which selects for low 

Akaike Information Criterion (AIC) and high coefficient of determination (R2) values. 

For the RF models, all variables were input into the initial model and subsequent 

models included only variables that with positive values from the sensitivity test, which 
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quantifies the increase in MSE after the variable has been permutated.  The final models 

were compared with the coefficient of determination (R2), MSE, and AIC. To compare 

AIC between model types, the modified equation by Hastie et al (2001) was used to 

compute AIC manually: 

 AIC = 𝑀𝑆𝐸 + 𝑠2 ×
𝑑

𝑁
                   (10) 

Where s2 is the squared sum of variance between the predicted and actual values of the 

test dataset (N) and d is the number of parameters. For SR, I is the number of variables 

in the output model plus 1 for variance and 1 for the intercept. For RF, d is calculated 

by:   

𝑑 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 # 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑢𝑠𝑒𝑑 + 1              (11) 

Where 1 is added for variance and the average number of times the variables are used 

in one tree of the forest was determined with the varUsed() function of the 

randomForest package (Breiman and Cutler, 2015) which calculates the amount of 

times each variable was used in the entire random forest. These values were summed 

and divided by the number of trees in the forest (501).  

Since running province-wide calculations in R is extremely time consuming, the 

predictive maps created with SRs were generated with Model Builder in ArcGIS while 

the predictive maps created with RF models were generated in R using the RF predict 

function.  With Model Builder, Raster Calculator was used to predict SC and SOC based 

on the stepwise regression equations (Figure 2.6). Finally, predictive maps were 

clipped to the extent of the BC Grasslands, as defined by a layer created by the 

Grasslands Conservation Council (2004).  

 Modelling and mapping was performed using ArcGIS (version 10.1) (ESRI 2012) 

and R (version 3.0.2) (R Development Core Team 2014) packages ‘rgdal’ (Bivand et al., 

2015), ‘raster’ (Hijmans et al., 2015), ‘randomForest’ (Leo Breiman and Adele Cutler, 

2015), and ‘XML’ (Lang et al., 2013). See Appendix B for script to manipulate MODIS 

data and create predictions based on RF models. 
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Figure 2.6:  Example of model Builder flowchart for pre-processing data and creating predicted soil carbon grids with the stepwise 
regressions for 2013 soil carbon model of fenced systems 
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RESULTS 

VEGETATION INDICES  

Simple regressions were performed to compare various VIs versus SC and SOC results 

for grazed and fenced systems (Table 2.2 and Figure 2.7). MSR data was only available 

for 2014. MSR data for 3 sites (K004, O001, and O041) are missing due to poor weather 

conditions during sampling.  

SC and SOC were most strongly correlated to NDVI derived from MSR data. 

Recall that the relatively large spatial resolution (250m) of the MODIS pixels result in a 

mixture of grazed (G) and fenced (F) treatments within a single pixel, and potentially 

land covers other than grassland.  Therefore it is unsurprising that the MSR data has 

stronger correlations with SC and SOC.  MODIS NDVI was more strongly correlated to 

SC and SOC than MODIS EVI, and therefore, it was selected as the model input to 

develop predictive carbon maps.  This result is mildly surprising, since the EVI filters 

out signatures from background soil, and it was expected that the signature of bare soil 

would be significant given the low density of the grass canopy. 
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Table 2.2: The relationship between green biomass (derived from various spectral indices) versus SC(%) and 
SOC(g/kg) for 0-10cm depth. 

      EVIMODIS   NDVIMODIS   NDVIMSR 

  Year 
Grazed/ 
Fenced 

F (p) R2   F (p) R2   F (p) R2 

SC 2012 G  20.52 (<0.001) 0.28 
 

15.71 (<0.001) 0.23 
 

N/A 
 

  
F 15.44 ( <0.001) 0.21 

 
16.61 (<0.001) 0.23 

 
N/A 

 
 

2013 G  20.70 ( <0.001) 0.26 
 

14.43 (<0.001) 0.2 
 

N/A 
 

  
F 8.99 ( 3.95E-03) 0.13 

 
8.83 (4.26E-03) 0.13 

 
N/A 

 
 

2014 G  19.80 ( <0.001) 0.03 
 

23.31 (<0.001) 0.35 
 

27.96 (2.29E-06) 0.18 

    F 25.45 ( <0.001) 0.31   31.12 (<0.001) 0.35   38.19 (8.77E-08) 0.41 

SOC 2012 G  9.24 ( 3.67E-03) 0.15 
 

8.14 (6.18E-03) 0.13 
 

N/A 
 

  
F 11.18 ( 1.48E-03) 0.17 

 
10.85 (1.72E-03) 0.16 

 
N/A 

 
 

2013 G  14.70 ( <0.001) 0.2 
 

14.88 (<0.001) 0.2 
 

N/A 
 

  
F 10.01 ( 2.48E-03) 0.15 

 
11.06 (1.53E-03) 0.16 

 
N/A 

 
 

2014 G  10.20 ( 2.29E-03) 0.15 
 

11.84 (1.09E-03) 0.17 
 

27.95 (2.30E-06) 0.34 

    F 19.91 ( <0.001) 0.26   20.28 (<0.001) 0.26   47.69 (5.86E-09) 0.47 
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Figure 2.7: Relationships between 2014 soil carbon (SC%) and soil organic carbon 
(SOC(g/kg)) versus normalized difference vegetation index (NDVI) derived from the 
multispectral radiometer. Plots a) and b) compare SC and SOC against NDVI derived 

from MODIS. Plots c) and d) compare SC and SOC against the MSR. 
 

 

In 2014, 3 notable outliers exist within MODIS dataset at the sampled locations (See 

Appendix A for list of sites, code names, and locations). They were not removed because 

they represent the inherent error caused by remote sensing imagery at this scale. These 

cases occur where sites were too close to non-grassland features to capture NDVI 

properly (i.e., the pixels contained mixed land cover types): 

 N010 Quilchena is located between an agricultural field and a steep hill  

 C010 Morrison Meadows  is close to a dried pond 
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 C030 Bald Mt Holding exists in a small grassland clearing within a forest stand 

which is <100m away 

GRAZED VS UN-GRAZED AREAS 

T-tests showed that there is no significant differences between grazed areas versus 

fenced areas with respect to SOC (p=0.190) or SC (p=0.614).  Factorial ANOVA results 

showed that there were no significant interactions between grazing and 

elevation/MAP/NDVI with respect to SC or SOC in 2013 or 2014.  

DEPTH 

ANOVAs were performed to compare SC and SOC in 2013 against depth as an input 

variable. The null hypotheses were that there were no differences for SC and SOC when 

compared by depth. The hypothesis was rejected at a 5% level for SC (F= 5.577, 

p=0.004) and SOC (F = 7.216, p=0.001). Specifically, a post hoc Tukey test has 

determined that there is significantly greater soil C in 0-10 cm than 10-20 cm (p=0.038) 

and 0-10 cm than 20-30 cm (p=0.006) and significantly greater SOC in 0-10 cm than 10-

20 cm (p=0.016) and 0-10cm than 20-30 cm (p=0.001). Note that for this analysis, sites 

that did not reach all depth increments were excluded. Figure 2.8 shows the 

distribution of SC and SOC by depth at 0-10cm, 10-20cm, and 20-30cm. Results from the 

Post Hoc Tukey Test show which categories are significantly different. 
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Figure 2.8: Comparison of a) Soil Carbon (SC%) and b) Soil Organic Carbon( SOC (g/kg)) 
over various depths (0-10cm, 10-20cm, and 20-30cm). Letters above boxes represent 
Post Hoc Tukey Test results where categories with different letters are significantly 

different. 

 

TIME 

To compare the change in SC and SOC from 2013 to 2014, a paired two-sample t-test 

was performed. Soil was only sampled to 10 cm in 2014; therefore, only 0-10 cm 

samples were used to compare the change in soil C over time because deeper soil stores 

less carbon and is less impacted by grazing. For the t-test, the null hypotheses were that 

the 2013 SC and SOC were greater or equal to the 2014 SC and SOC.  These hypotheses 

were rejected at a 5% level (p=0.001 for SC and p=0.031 for SOC). Figure 2.9 shows the 

distribution of SC and SOC by year. Results from the Post Hoc Tukey Test show which 

categories are significantly different. 
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Figure 2.9 Comparison of a) Soil Carbon (SC%) and b) Soil Organic Carbon (SOC (g/kg)) 
between 2013 and 2014. Letters above boxes represent Post Hoc Tukey Test results 

where categories with different letters are significantly different. 
 

Table 2.3 displays the SR results for change in SC and SOC from 2013 to 2014. 

Elevation was the only input variable that was consistently a significant variable.  
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Table 2.3: Stepwise regression results of change in Soil Carbon and Soil Organic Carbon from 2013 to 2014 in 
Grazed (G) and Fenced (F) Systems. The coefficients (Est) and significance (Sig) of each variable in the model is 
displayed.  Sig: significance codes of  p-values represented by 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘.. ’ 1. 

 
Soil Carbon 

 
Soil Organic Carbon 

 
G F 

 
G F 

 
Est Sig Est Sig 

 
Est Sig Est Sig 

Intercept -3.57 * -3.02 . 
 

6.17 
 

-5.31 * 

Elevation 0.01 ** 0.01 * 
 

-0.01 ** 0.01 * 
Aspect 

         Slope 
         MAT 
     

-0.01 . 
  MAP 

     
-0.01 . 0.01 

 NDVI_MODIS 
     

9.77 
   Soil Type 

         Soil Drainage 
     

0.94 ** -0.36 
 Vegetation 

Community 
         Adjusted R2 0.12 0.09 

 
0.24 0.17 
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SOIL CARBON AND SOIL ORGANIC CARBON DENSITY 

SRs were used to model SC and SOC density for grazed (G) and fenced (F) systems, and 

to display the change between the two systems (grazed-fenced)(C) (Tables 2.4 and 2.5). 

The results from 2013 do not reveal any significant variables for predicting SC and SOC 

density. In 2014, elevation, slope, aspect, and vegetation community were significant 

variables. 
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Table 2.4: Stepwise regression for 2013 Soil Carbon and Soil Organic Carbon Density for grazed (G) and fenced (F) systems, 
and the change between the two (C). The coefficients (Est) and significance (Sig) of each variable in the model is displayed.  Sig: 

significance codes of  p-values represented by 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘.. ’ 1.. 

 
Soil Carbon 

 
Soil Organic Carbon 

 
G F C 

 
G F C 

 
Est Sig Est Sig Est Sig 

 
Est Sig Est Sig Est Sig 

Intercept 5.57   * 0.73 

 
1.31 

  
1.04 *** 5.81 

 
-5.24 

 Elevation 

             Aspect 
    

-0.01 

    
-0.01 

 
0.01 . 

Slope 

       
0.10 . 

    MAT 

         
-1.84 * 1.71 * 

MAP 

             NDVIMODIS 

         
16.95 * -16.51 

 Soil Type 

  
-0.04 

 
-0.06 

        Soil Drainage 

  
0.15 . 

     
0.86 

 
-0.72 * 

Veg Community 

    
-0.11 

    
-0.60 

 
0.69 . 

Adj R2 0.07 0.07 0.17 

 
0.05 0.18 0.23 
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Table 2.5: Stepwise regression results for 2014 Soil Carbon and Soil Organic Carbon Density for grazed (G) and fenced (F) 

systems, and the change between the two (C). The coefficients (Est) and significance (Sig) of each variable in the model is displayed.  

Sig: significance codes of p-values represented by 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘.. ’ 1. 

 
Soil Carbon 

 
Soil Organic Carbon 

 
G F C 

 
G F C 

 
Est Sig Est Sig Est Sig 

 
Est Sig Est Sig Est Sig 

Intercept -4.32 * -2.74 * -1.74 

  
-2.45 

 
-35.52 ** 22.10 ** 

Elevation 0.00 * 0.00 * 

   
0.00 ** 0.03 *** -0.02 *** 

Aspect 0.01 * 0.00 . 
   

0.00 

 
0.04 * -0.04 * 

Slope -0.24 * -0.17 * 

   
-0.29 * -1.57 * 1.31 . 

MAT 

    
0.37 . 

       MAP 

             NDVIMODIS 

       
-3.87 

     Soil Type 

             Soil Drainage 0.34 . 0.29 * 

   
0.28 

 
1.64 

   Veg Community 0.30 * 0.21 * 

   
0.37 * 2.03 * -1.41 . 

Adj R2 0.20 

 
0.20 

 
0.04 

  
0.19 

 
0.33 

 
0.29 
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SC and SOC Density by Region 

ANOVAs were performed to compare Soil Carbon Density (SCD) and Soil Organic 

Carbon Density (SOCD) against Region as an input variable. The null hypothesis were 

that there were no differences for  SCD and SOCD for grazed (G) and fenced (F) systems, 

and the change between G and F (C) for 2013 and 2014  when compared by region. The 

hypothesis was rejected at a 5% level for SOCD for grazed systems in 2014 (F=9.3, 

p=0.000), SOCD for fenced systems in 2014 (F=6.538, 0.001), SCD for grazed systems in 

2014 (F=10.45, p=0.000), SCD for fenced systems in 2014 (F=12.78, p=0.000), and 

SOCD for grazed systems in 2013 (F=5.05, p=0.003).  Significant results (p<0.05) were 

plotted in Figure 2.10 which shows the distribution of SC and SOC density by region. 

Results from the Post Hoc Tukey Test show which categories are significantly different.  
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Figure 2.10: Soil Carbon and Soil Organic Carbon density by region: a) Grazed 2014, b) 
Fenced 2014, c) Grazed 2014, d)  Fenced 2014, e) Grazed 2013.. Letters above the bars 

represent results from the Post Hoc Tukey Test where categories sharing the same 
letter are not significantly different.  
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STEPWISE REGRESSIONS AND RANDOM FOREST MODELS  

Tables 2.6 and 2.7 show the SR results for SC and SOC for grazed and fenced systems in 

2013 and 2014, respectively. The SR indicated that growing season average of NDVI, 

Elevation, and MAP were the most useful factors in predicting SC and SOC in 2013 and 

2014 (Tables 2.8 and 2.9).  Figure 2.11 displays predicted SC and SOC for 2013 and 

2014 in grazed and fenced systems.  Figure 2.12 displays the predicted SC values across 

BC grasslands based on the SR results for 2013 fenced systems (See Appendix C for 

larger maps).  Notice the distribution of higher SC values in upper grasslands, at high 

elevations which are associated with more moisture and vegetation.  In 2013, an 

interesting pattern shows that MAP is a significant in fenced systems but not in grazed 

systems. In 2014, higher R2 and lower MSE and AIC values indicate that SR created 

better models when NDVI was derived from the MSR.  
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Table 2.6: Stepwise regression results for 2013 Soil Carbon and Soil Organic Carbon in grazed (G) and 
fenced (F) systems.  The coefficients (Est) and significance (Sig) of each variable in the model is displayed.  
Sig: significance codes of  p-values represented by 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘.. ’ 1. 

 
Soil Carbon 

 
Soil Organic Carbon 

 
G F 

 
G F 

 
Est Sig Est Sig 

 
Est Sig Est Sig 

Intercept -4.06     * -8.22      **  -2.23      -8.80      *** 
Elevation 0.52 .. 0.78 **  0.38  0.80 *** 
Aspect 

         Slope 
         MAT 
         MAP 
  

0.71 ** 
   

0.82 * 
NDVIMODIS 1.89 .. 

   
1.77 

   Soil Type 
     

-0.27 
   Soil Drainage 0.52 . 

   
0.47 

   Veg Community 
         R2 0.41 0.35  0.48 0.46 

MSE 0.08 0.08  0.08 0.05 
AIC 0.11 0.11  0.13 0.08 
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Table 2.7: Stepwise regression for 2014 Soil Carbon and Soil Organic Carbon in grazed (G) and fenced (F) systems comparing Normalized 
Difference Vegetation Index derived from MODIS and the Multispectral Radiometer.   The coefficients (Est) and significance (Sig) of each 
variable in the model is displayed.  Sig: significance codes of  p-values represented by 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘.. ’ 1. 

 Model inputs include NDVIMODIS  Model inputs include  NDVIMSR 

 
Soil Carbon Soil Organic Carbon 

 
Soil Carbon Soil Organic Carbon 

 
G F G F 

 
G F G F 

Variables Est Sig Est Sig Est Sig Est Sig 
 

Est Sig Est Sig Est Sig Est Sig 

Intercept -15.86     *** -13.50   *** -8.60     *** -13.96   ***  -13.05   *** -8.67   ** -6.09      * -11.67      *** 
Elevation 1.31 *** 1.11 *** 1.55 *** 1.50 *** 

 
0.67 . 0.42 .. 1.07 ** 0.77 ** 

Aspect 
         

0.13 .. 
      Slope 

    
-0.28 * 

       
-0.35 * 

  MAT 0.75 .. 0.50 .. 
             MAP 1.02 * 0.99 ** 
  

0.89 * 
 

1.28 * 0.96 ** 
  

1.15 *** 

NDVIMODIS 2.05 . 1.74 * 
     

-- -- -- -- -- -- -- -- 
NDVIMSR -- -- -- -- -- -- -- -- 

 
2.96 *** 3.33 *** 2.23 ** 2.86 *** 

Soil Type 
         

0.44 * 
      Soil Drainage 

           
0.28 .. 

    Veg Community 
  

-0.14 .. 
     

-0.37 ** -0.30 ** 
    R2 0.56 0.68 0.49 0.59  0.70 0.77 0.62 0.73 

MSE 0.11 0.13 0.16 0.13  0.16 0.09 0.15 0.08 
AIC 0.29 0.23 0.23 0.18  0.30 0.16 0.22 0.13 
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Figure 2.11: Predicted soil carbon (SC) and soil organic carbon (SOC) based on SR 
models: a) SOC Grazed 2014, b) SOC Grazed 2013, c) SOC Fenced 2014, d) SOC Fenced 

2013, e) SC Grazed 2014, f) SC Grazed 2013, g) SC Fenced 2014, and h) SC Fenced 2013.   
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Figure 2.12: Predicted Soil Carbon (SC%) for fenced systems in 2013 based on Stepwise Regression. Soil carbon layer 
over-layed on elevation to show distribution in upper and lower grasslands. 
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Based on comparisons of R2 and AIC values, SR produces models that explain more 

variance and are of better quality (R2=0.49-0.77 and AIC = 0.30-0.13 for SR models in 

2014; R2=0.36-057 and AIC = 0.36-0.18) (Tables 2.6-2.9). In 2013, all SR models have 

higher R2 and lower AIC values when compared to their RF counter-parts (Tables 2.6-

2.9).  In 2014, 6 of the 8 SR models have higher R2 and lower AIC values in comparison 

to the RF models (Tables 2.6-2.9). Consistent with SR results, 2014 RF results indicated 

that the input variables Elevation, MAP, and NDVI were important in SC and SOC 

prediction. In 2013, RF showed soil drainage to be a more important variable than MAP 

or NDVI (Table 2.8) Figure 2.13 shows the predicted SC and SOC for 2013 and 2014 

based on RF models. Visually, SR and RF models produced similar patterns when 

mapped.  

 

 

Table 2.8: 2013 Random Forest results showing “%incMSE”, the percent increase in 
Mean Square Error when variable is permutated. Variables with negative“%incMSE” 
values were removed from the model and therefore not displayed in the table. 

 
Soil Carbon 

 
Soil Organic Carbon 

 
G F 

 
G F 

Elevation 
10.61 11.00   6.25 8.62 

Aspect 
1.43 1.30  2.93 1.14 

Slope 
   2.18 2.46 

MAT 
     

MAP 
 1.75  0.12 5.07 

NDVIMODIS 
5.47   7.31 4.81 

Soil Type 
   2.17 1.01 

Soil Drainage 
8.84 3.98  6.21 4.82 

Veg Community 
4.96 3.44   1.88 2.35 

R2 
.28 .16  .24 .22 

MSE 
0.07 0.09   0.07 0.07 

AIC 
0.79 1.09  1.13 1.25 
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Table 2.9:  2014 Random Forest results showing “%incMSE”, the percent increase in Mean Square Error when variable is 
permutated. Variables with negative“%incMSE” values were removed from the model and therefore not displayed in the table.  

 
Remote Sensing 

 
RS and MSR 

 
Soil Carbon Soil Organic Carbon 

 
Soil Carbon Soil Organic Carbon 

 
G F G F 

 
G F G F 

Elevation 
15.13 16.24 18.95 14.33   19.55 18.57 25.89 19.26 

Aspect 
         

Slope 
4.72 7.59 9.89 6.13   4.06 9.17 6.33 

MAT 
        0.77 

MAP 
7.55 8.79 0.07 7.47  7.95   2.62 

NDVIMODIS 
6.08 12.88 5.06 6.39  -- -- -- -- 

NDVIMSR 
-- -- -- --  7.33 5.83 7.96 15.74 

Soil Type 
         

Soil Drainage 
0.69 1.14  0.42     3.16 

Veg Community 
4.06 6.22 3.68 3.50   4.56 7.55   3.15 

R2 
0.38 0.53 0.36 0.38  0.38 0.44 0.51 0.57 

MSE 
0.11 0.13 0.15 0.12   0.07 0.10 0.10 0.08 

AIC 
0.27 0.30 0.36 0.24  0.18 0.23 0.23 0.19 
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Figure 2.13: Predicted soil carbon (SC) and soil organic carbon (SOC) based on RF 
models: a) SOC Grazed 2014, b) SOC Grazed 2013, c) SOC Fenced 2014, d) SOC Fenced 

2013, e) SC Grazed 2014, f) SC Grazed 2013, g) SC Fenced 2014, and h) SC Fenced 2013.
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DISCUSSION  

What environmental and anthropogenic factors allow us to best predict SC? And how is SC 

distributed across BC grasslands? 

From the SR and RF results, the factors that best predicted SC and SOC values 

include elevation, MAP, and NDVI, with elevation being the most significant (Tables 2.7-

2.10).  Accordingly, when SC and SOC were mapped to show distribution, SC and SOC 

values were greatest at high elevation areas where there is more moisture and 

vegetation (Figure 2.11 and 2.12). In terms of vertical distribution, there are 

significantly greater SC and SOC stocks at 0-10 cm, compared to 10-20 cm or 20-30 cm 

(Figure 1.1). Since the soil profile depths across BC are unknown, no estimates of SC 

and SOC per area were produced. Spatial mapping was confined to 0-10cm soil depth. 

Understanding SC and SOC distribution in BC grasslands is a necessary input for 

economic models of carbon stocks and land use management. Before the ranching 

industry can be incorporated successfully into carbon offset programs in BC, we must 

know the SC and SOC potential of the land.  

What factors control sensitivity to grazing in regards to SC? 

SR and RF results revealed that precipitation, soil drainage, and slope 

differentially impact grazed versus fenced areas (Tables 2.6, 2.9, and 2.7). 2013 SR 

indicated MAP significantly (p<0.01) positively impacts SC and SOC distribution in 

fenced areas but not grazed areas (Table 2.6). 2014 RF indicated soil drainage 

controlled SOC in fenced areas but not grazed areas (Table 2.9). 2014 SR indicated that 

slope negatively impacts the distribution of SC and SOC in grazed areas but not fenced 

areas (Table 2.7). Therefore, steep areas may be more sensitive to grazing; however, 

further testing is needed to confirm results since this result is not consistent between 

years and model types. 

What factors indicate high potential to store C with time? 

Elevation was the only variable consistently significant as a input for SC and SOC 

change from 2013 to 2014 (Table 2.4).  Since the greatest SC and SOC stocks exist at the 
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highest elevations, it is logical that these areas also have the greatest potential to 

increase C storage over time.  

How do SR models compare to RF models? 

By comparing R2 and AIC values between SR and RF models, I found that SR 

generally produced models that explained more of the variance and were less complex 

(Figures 2.7-2.10). As previously mentioned, one disadvantage of RF is that it is 

challenging to interpret the relationship between the input and response variables 

because so many DTs are produced when creating a RF model; this limits the 

interpretation of the relationships between the response and then input variables. For 

the application of predicting soil carbon in BC grasslands with the purpose of 

developing a carbon offset program and aiding land management, the ability of a model 

to be easily interpreted is important. In my comparison of SR and RF, SR is the better 

tool for my purpose in terms of predictability, complexity, and the ability to be 

interpreted.  

How does increased resolution of NDVI data improve modelling? 

In 2014 models, when NDVIMSR data was substituted for NDVIMODIS, more 

variance was explained and lower MSE values were generally produced (Tables 2.6 and 

2.9). Since one MODIS tile covers a 250m2 area and likely encompasses grazed and 

fenced treatments at one site, SC and SOC were more strongly correlated to NDVIMSR 

than NDVIMODIS (Table 2.2). Therefore, it is logical that models using NDVIMSR data 

created better predictions and explained more variance. Since NDVI data is readily 

updated over time, improved modelling accuracy with MSR data demonstrates the 

potential for efficient and continuous SC and SOC monitoring with NDVI-based models 

using high resolution data.  

CONCLUSION 

To mitigate the effects of climate change, the idea of reducing atmospheric CO2 

by sequestration C into the terrestrial ecosystems is an area of much interest. Studies 

examining other regions have shown rehabilitation of rangelands to effectively prevent 
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SC emissions in other regions (Dean et al., 2012); however, it is expensive to alter land 

management practices. The development of a C offset program for ranchers may be 

incentive to employ (and continue to employ) sustainable practices, compensating 

ranchers for providing the valuable ecosystem service of C sequestration.  

Past research has found both strong positive and negative grazing effects on SC, 

(Chapman and Lemaire, 1993; Schlesinger et al., 1990; Bremer, 2001; Loeser et al., 

2007; Schönbach et al., 2011; Schuman et al., 1999). McSherry and Ritchie (2013) 

conclude that grazer effects on SC are highly context-specific and their causations 

interrelated.  Due to the contradicting impacts on C sequestration, it is difficult to 

quantify the effect of land management (grazing). Despite this controversy, studies have 

shown a potential for additional C storage. Thompson et al. (2008) modeled potential 

rate of C sequestration by three ecosystem types over the next 100 years, concluding 

that agricultural lands store 0.21 GtC/year, reforestation store 0.31 GtC/year and 

pasture lands store 0.15 GtC/year. Conant et al. (2001) estimated that grassland 

ecosystems under different management scenarios would be able to sequester 0.54 

MgC/year per hectare, illustrating the potential for BC grasslands to store C in order to 

mitigate the effects of GHGs in the atmosphere. 

Chevrolet’s deal with North Dakota ranchers further demonstrates the potential 

for carbon crediting in partnership with the ranching industry (USDS, 2014). 

Chevrolet’s purchase was undertaken as part of their commitment to reduce eight 

million tons of CO2 from being emitted (USDS, 2014). Landowners voluntarily place 

their land under a perpetual easement but keep their rights for grazing and growing 

hay. The carbon storage benefits are quantified, verified by a third party (United States 

Department of Agriculture), and registered as carbon credits available for purchase (by 

Chevrolet) (USDS, 2014).  Despite this step forward, carbon offsets for ranchers are not 

yet available in BC. My thesis discusses the climatic and topographic restraints of SC 

distribution in BC’s grasslands, a necessary backbone for developing a functioning 

economic model for C offsets and ranching.  
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Chapter 3 : GENERAL CONCLUSIONS 

 

Given the high coefficient of determination ( R2)values which range between 

0.36 and 0.77 for soil carbon (SC) and soil organic carbon (SOC) models in 2014, this 

research has demonstrated the effectiveness of Normalized Difference Vegetation Index 

(NDVI) based models to predict SC and SOC. Since NDVI imagery derived from the 

MODIS satellite is updated every 16days at a 250m resolution and NDVI is highly 

correlated to SC and SOC, these models represent the framework for a monitoring 

system for SC and SOC in BC grasslands. The results will help facilitate the usage of a 

carbon credit program for sustainable ranching in British Columbia (BC).   

LIMITATIONS 

Sampling 

 The soil samples collected reached 30 cm, only encompassing portions of some 

soil profiles. Since the soil profile depths across BC are unknown and the samples 

collected did not capture the entire profile, no estimates of SC and SOC per area were 

produced.  Distribution maps were only created for 0-10cm soil depth because we could 

not reach 30cm at many sites. Using an auger to drill a 20cm wide core was our best 

option for reaching as deep as possible without creating a soil pit; however, this method 

proved less effective in rocky terrain.  

Another obstacle in regards to sampling was the clumped distribution of the 

Range Reference Areas (RRA) and therefore of the sampled locations; this limited the 

accuracy of SC and SOC prediction in grassland areas that are far from sampled RRA 

sites. As suggested by Henderson (2004), a collaborative effort is needed for greater 

coverage and model accuracy: 

“Definitive answers lay in a combination of similarly controlled 
experimental sites, with replicated grazing regimes, that use a single 
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sampling and reporting protocol. Coordination amongst researchers in 
the design, execution and analysis of long-term grazing experiments will 
yield both accurate and precise data for meta-analysis and regional 
models of grazing impacts on ecosystem processes and patterns. Such 
coordination is necessary to provide data sets useful for developing 
general theory on the ecological impacts of grazing, and management 
prescriptions for carbon sequestration.” (Henerderon, 2004) 

Understanding the Impact of Grazing 

Since there was no information about grazing intensity at my study sites and no 

significant difference between SC or SOC in grazed versus fenced areas, the impact of 

grazing is difficult to interpret from the results. Several other studies carried out on 

rough fescue grasslands in Alberta (Johnston et al., 1971), on bluebunch wheatgrass 

grasslands in the southern interior of British Columbia (Evans et al., 2012), and on 

rough fescue grasslands in British Columbia (Krzic et al., 2013) also reported that the 

long-term elimination of grazing did not lead to an increase of SC when compared to 

grazed pastures.  It is difficult to detect trends in SC difference between grazed and 

fenced areas for a number of reasons. First, SC and SOC are more variable between sites 

than between grazing treatments (fenced or grazed samples at one site).  Second, the 

effect of grazing may be positive or negative, and these opposite effects cancel out when 

compare overall trends. Therefore, we must examine the differences in the models of 

grazed and fenced systems in order to identify in what contexts grazing increases and 

decreases C storage. For example, grazing may reduce SC and SOC levels in steep areas 

(Table 2.7).  

The best units in which to report SC and SOC  

There are several ways to report SC and SOC:  (1) concentration as percent 

carbon or g kg-1, (2) carbon mass per either soil volume or area per soil depth 

increment, or (3) carbon mass per equivalent soil mass. The latter 2 units allow spatial 

scaling up of results, but carbon mass per volume may be misleading since bulk density 

(BD) is also influenced by grazing treatment. For example, a compact, heavy sample of 

soil from the uppermost 10 cm of soil may contain more C by mass than a loose sample 
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of soil from the same depth, even though both may have the same % carbon; however, 

to conclude that grazing increases SOC would be incorrect because there were no 

corrections for treatment differences in BD. Therefore, future studies should report soil 

elemental concentrations on an equivalent mass basis to provide a quantitative 

measure independent of treatment differences in BD, as suggested by Ellert and Bettany 

(1995) and Carter et al. (1993).  

MANAGEMENT IMPLICATIONS AND CLIMATE CHANGE 

Due to their sensitivity and susceptibility to degradation, lower elevation 

grasslands should only be grazed with extreme caution (McCulloch, 2013). For all 

grassland types, grazing strategies that best maintain grassland ecosystem function 

should be promoted (Maestre et al., 2012) in order to prevent degradation. 

Many types of grassland are already experiencing changing climate regimes that 

will continue to change in the future; however, for various reasons a lag phase exists in 

the vegetation response to the mismatch (Gayton, 2012). Wang et al. (2012) expects a 

new ecological climate zone, hotter and drier than anywhere currently found in British 

Columbia, will likely emerge in the South Okanagan/Similkameen and the hottest parts 

of the Thompson River valley (Gayton, 2012).  This means that areas that are already 

sensitive to grazing with respect to plant community and C storage, will only become 

more sensitive.  

As grasslands are affected by changing precipitation and temperature patterns, 

grazing systems will have to evolve to suit the plant communities that grow in the new 

climate regime. This will, in turn, impact carbon sequestration systems. Therefore, as 

climate change induced increases of seasonal temperature and decreased continue to 

affect the grasslands, continued monitoring of plant community change and their 

corresponding impact on carbon storage is necessary.   
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FUTURE RESEARCH DIRECTIONS 

Vegetation Classification Layer 

Currently, another project in the Fraser Lab is comparing the differential 

amounts of fine root growth by various grassland species on the effect of on SC content. 

Since fine roots represents a significant means for grassland ecosystems  to store 

carbon,  it would be helpful to know how strongly fine root biomass and SC content are 

related and if so, the species which have the greatest root mass and potentially 

contribute the most SC. These results may improve the model if multi or hyperspectral 

satellites can be spectrally unmixed to identify certain species with high SC storage 

potential. For instance, a larger spectral library of grassland species could be developed 

to add to a trial study conduction during the summer of 2014 (APPENDIX C). More 

simply, weights could be added to the existing Vegetation Community layer developed 

by the GCC to indicate species which contribute more to SC.  

Hyperspectral Satellites to Quantify SC 

Technologies have been developing to quantify SC rapidly using hyperspectral 

satellites over much larger scales.  For instance, a study by Gomez et al. (2008) has 

compared measurements in the field with an AgriSpec portable spectrometer (350–

2500 nm) and remotely from the Hyperion hyperspectral sensor onboard satellite 

(400–2500 nm).  The spectral resolution did not change the accuracy of the model 

regardless of the size of SC ranges (between 0.54 and 1%, between 1.08 and 5.1%, or 

between 0.54 and 5.1%) or number of soil samples (56, 72 or 146) used in the 

prediction models (Gomez et al., 2008). These results demonstrate the potential for the 

use of hyperspectral remote sensing for predictions of soil organic carbon. Gomez et al. 

(2008) suggests the use of Environmental Mapping and Analysis Program (EnMAP) 

satellite for future projects. It has an onboard hyperspectral sensor which will provide 

high-spectral resolution observations over the wavelength range from 420 to 2450 nm 

(Stuffler et al., 2007). The spatial ground sampling distance will be 30 m and the Signal 
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to Noise Ratio of EnMAP should be better than that of Hyperion. Future products will 

record bio-physical, bio-chemical and geo-chemical variables on a global basis. 

The model could also be tweaked for smaller scale projects. To monitor specific 

ranch/ rangelands, a MSR could be mounted to a tractor in order to obtain a greater 

coverage of spectral data for SC analysis with an efficient and non-destructive 

technique. This approach may be appropriate for pilot studies with specific ranchers 

during the start-up of the provincial monitoring project. Eventually, all in situ methods 

can be phased out, leaving a highly efficient and low cost monitoring system in place.   

Development of the Grassland Carbon Profit (GCPF) framework  

The Grassland Carbon Profit model (Sapozhnikova, 2012) has been developed to 

represent the profit potential of the ecological service, carbon sequestration.  Profit 

potential describes the ability of a given location to generate grassland C, based on the 

economics and biology of the location. It represents the net profit that could be 

obtained by selling the entire potential C. The results of my research will be used to 

update an economical model that better represents the biological factors.  

CONCLUSION 

Modelling and mapping SC and SOC in BC grasslands is an important step 

towards making a carbon offset program for ranching in BC a reality. Though there are 

several limitations associated with modelling SC and SOC over BC, working with the 

other members of the “Soil carbon sequestration in grasslands” project will help 

address these limitations. For example, the ‘Grazing management2’ stream of the project 

compares Management-intensive Grazing versus traditional grazing management at 7 

ranches in BC. This research focuses on a smaller spatial scale but is based on a strong 

understanding of the grazing management practices. The data from both projects will 

be used in conjunction to form an economic model (the third stream of the “Soil carbon 

sequestration in grasslands” project).  

                                                        
2 This research is being conducted by Dan Denesiuk (MSc Candidate at Thompson Rivers University, 
Kamloops, BC, Canada). For more information visit: 
https://grazingmgtandclimatechange.wordpress.com/research/management-intensive-grazing/  

https://grazingmgtandclimatechange.wordpress.com/research/management-intensive-grazing/
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Collectively, the “Soil carbon sequestration in grasslands” project aims to 

quantify SC stocks in BC grasslands, determine the impact of grazing on SC 

sequestration, and assign monetary values to SC stocks. Ultimately, this research is 

working to validate that C sequestration in rangelands should be considered a viable 

climate change mitigation strategy and incorporated into CO2 emissions abatement 

policy. 
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APPENDIX A: SITE CODES AND LOCATIONS 

 

I created site codes based on the region the sites are located in: boundary (B), Cariboo-

Chilcotin (C), Kootenay (K), Okanagan (O), Thompson- Nicola (T). Site names were 

developed by the RRA program at the Ministry if Forests and Range. Coordinates were 

recorded with a GPS unit on site (Geographic Coordinate System, NAD83, in decimal 

degrees).  

Site_ID Name Latitude Longitude  

B001 Johnstone Creek 49.0532 -119.048 
B002 Overton-Moody  49.00883 -118.284 
B042 Murray Gulch 49.03262 -118.792 
C001 Wild Goose Lake 51.44033 -121.951 
C002 Cow Camp 51.27158 -121.604 
C003 Little White Lake 51.27887 -121.709 
C004 Cottonwood Corrals 51.6101 -122.405 
C005 Big Flat 51.62623 -122.406 
C006 Cultus Lake 51.671 -122.393 

C007 Alex Lake 51.61645 -122.659 
C008 Cow Lake 51.76267 -122.658 
C010 Morrison Meadow 52.40975 -125.15 
C011 Polywog Lake 51.93745 -124.465 
C012 Villa 52.07172 -123.49 
C013 Punti Lake 52.21577 -123.92 
C014 Stone Pasture Lower 51.95923 -123.189 
C015 Haines Lak 51.95227 -123.263 
C017 Tsuh Lake 51.87788 -123.283 
C018 Snake Pit 51.98355 -122.415 
C019 Loran C 51.98532 -122.396 
C023 Big Sage Farwell 51.8245 -122.546 

C024 Needlegrass Farwell 51.83223 -122.548 
C025 Mile 35 51.87353 -122.528 
C026 Thaddeus Lake 51.93742 -122.669 
C027 Dog Lake 51.94458 -122.633 
C028 Wineglass 51.8984 -122.609 
C029 Bald Mountain Big B 51.96017 -122.617 
C030 Bald Mountain Holding 51.92605 -122.589 

http://www.for.gov.bc.ca/rsi/range/rra/intro.htm
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C031 N Long Lake 51.91193 -122.557 

C032 Toosey 51.94998 -122.496 
C033 Cotton Lake 51.95127 -122.479 
C034 Alkali Creek 51.83153 -122.144 
C035 Joes Lake 51.75465 -122.214 
C036 Sting and Vert 51.6527 -122.166 
C037 Vert Lake 51.62205 -122.19 
K001 Gold Creek 49.08118 -115.24 
K002 Bronze Lake 49.44472 -115.393 
K003 Bull River 49.49163 -115.43 
K004 Skookumchuck 49.88255 -115.764 
K005 Rushmere Rd 50.4119 -115.956 

K043 Premier Ridge 49.87078 -115.672 
K044 Buck 49.2133 -115.265 

K045 Sun Lakes 50.20442 -115.895 
N001 Drum 50.09323 -120.674 
N002 Minnie W 50.0313 -120.403 
N003 Minnie E 50.03133 -120.4 
N004 Summit N 50.06355 -120.429 
N005 Summit S  50.06345 -120.429 
N006 Hamilton Fork 50.08662 -120.451 
N007 Goose Lake 50.10312 -120.427 
N008 Stipa Rich 50.06648 -120.447 
N009 Stipa Nel 50.0784 -120.449 

N010 Quilchena 50.16768 -120.491 
O001 Crump 49.63168 -119.856 
O002 McLellan 49.32847 -119.628 
O003 Hayes Lease 49.0953 -119.526 
O004 Chopaka 49.01167 -119.676 
O005 East Chopaka 49.00997 -119.61 
O041 Roddy Flats 49.5834 -119.782 
T001 CDA LG 2 50.73817 -120.427 
T002 CDA Lower Grazing 50.73877 -120.433 
T014 CDA-M 50.76518 -120.434 
T016 LDB Pond  50.78687 -120.449 

T017 Frolek 50.81632 -120.439 
T038 West Mara 50.74488 -120.496 
T040 Tranquille 1981 50.73293 -120.517 
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APPENDIX B: SCRIPT  

 
The script below is broken down into 5 sections: 
 
1) Download MODIS data 
2) Mosaic MODIS data 
3) Process MODIS data and extract data from site locations 
4) Loess smooth MODIS data and create raster of growing season averages for each year 
5) Use Random Forest to Generate Soil Carbon and Soil Organic Carbon Predictions 
 
########################################################## 
########################################################## 
 
## 1) Download MODIS data 
## Created by David Hill Sept. 27, 2013 
 
########################################################## 
 
# SPECIFY PREFERENCES 
WD ='F:/MScThesis/IndStd/Rproj/' 
WD 
HDFDIR= paste(WD,'hdf/',sep='') # LOCAL DIRECTORY TO HOLD HDF FILES 
HDFDIR 
YEARS = 2011:2014  # APPLICABLE YEARS AS VECTOR 
# MODIS tile codes 
TILES = c('h09v03', 'h09v04',  
 'h10v02', 'h10v03', 'h10v04',  
 'h11v02', 'h11v03', 
 'h12v02', 'h12,v03')  
PROD <- "MOD13Q1" # PRODUCT IDENTIFIER 
# Web address of product 
PRODURL<- "http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.005/"  
 
########################################################## 
 
# load XML library 
# The XML library permits us to parse XML documents 
# HTML is a XML-like language 
# install.packages("XML") 
library(XML) 
 
########################################################## 
 
# GET AVAILABLE DATES FOR APPLICABLE YEARS 
DATES=NULL 
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for( i in 1:length(YEARS) ){ 
 html.tree=htmlTreeParse(PRODURL, useInternalNodes=TRUE)  
 nodes <- getNodeSet(html.tree, "//a[@href]") 
 links <- sapply(nodes, function(x) x <- xmlAttrs(x)[[1]])  
 PAT = paste(YEARS[i], '.*.*/', sep='') 
 tmp<-grep(x=links, pattern=PAT, value=TRUE) 
 DATES=c(DATES,tmp) 
} 
 
DATES 
########################################################## 
 
#  GET APPLICABLE HDF FILES 
NAMES=NULL 
for( i in 1:length(DATES) ){ 
 ##################################### 
 # get filenames 
 URL=paste(PRODURL,DATES[i],sep='') 
 html.tree=htmlTreeParse(URL, useInternalNodes=TRUE)  
 nodes <- getNodeSet(html.tree, "//a[@href]") 
 links <- sapply(nodes, function(x) x <- xmlAttrs(x)[[1]]) 
 TMP=NULL # define TMP OUTSIDE OF LOOP FOR VARIABLE SCOPING  
 for(j in 1:length(TILES) ){ 
  PATTERN=paste(PROD,'.*.',TILES[j],'.*.hdf', sep='') 
  TMP=c(TMP,grep(x=links, pattern=PATTERN, value=TRUE)) 
   
 } 
 # strip XML hangers-on 
     TMP=grep(x=TMP,pattern="*.xml",value=TRUE, invert=TRUE) 
TMP 
 
  
NAMES 
 ##################################### 
 # DOWNLOAD FILES 
 for( j in 1:length(TMP) ){ 
  Resource=paste( PRODURL, DATES[i],TMP[j], sep='') 
  Destination=paste(HDFDIR, TMP[j], sep='') 
  print(sprintf('Putting %s in location %s', Resource, Destination ) ) 
  download.file(Resource, Destination, mode='wb')   
 } 
} 
 
write.table( x=NAMES, file= 'F:/MScThesis/IndStd/Rproj/hdffilelist.txt', 
row.names=FALSE, col.names=FALSE) 
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########################################################## 
########################################################## 
 
## 2) Mosaic MODIS files 
##  Created by David Hill Sept. 27, 2013 
 
########################################################## 
 
# SPECIFY PREFERENCES 
# working directory 
WD ='F:/MScThesis/IndStd/Rproj/' 
# LOCAL DIRECTORY TO HOLD HDF FILES 
HDFDIR=paste(WD,'hdf/',sep='') 
# LOCAL DIRECTORY HOLDING MRT 
MRTDIR = paste(WD,'MRT/MRT_Win/bin/',sep='')   
# LOCAL DIRECTORY TO HOLD MOSAIC 
MOSDIR = paste(WD,'mosaic/',sep='')     
# FILE HOLDING TILE FILE NAMES 
TFILE = paste(WD,'hdffilelist.txt', sep='') 
 
########################################################## 
 
# load rgdal library 
# rgdal provides bindings to Frank Warmerdam's  
# Geospatial Data Abstraction Library (GDAL) (>= 1.6.3)  
# and access to projection/transformation operations  
# from the PROJ.4 library.  
install.packages('rgdal') 
library(rgdal) 
 
########################################################## 
 
# read names  
NAMES = read.table(TFILE, header=FALSE, as.is=TRUE) 
NAMES 
 
########################################################## 
 
# mosaic the blocks 
for( T in 1:length( NAMES[,1] ) ){ 
#T=1 # for debug 
 # Filename base for mosaic files 
 MOSname=paste(MOSDIR,NAMES[T,1], sep='') 
 moslist = file(paste(MOSname, ".list.prm", sep=""), open="wt") 
 write(paste(HDFDIR, NAMES[T,2], sep=""), moslist) 
 for( i in 3:length(NAMES[T,]) ){ 
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  write(paste( HDFDIR,NAMES[T,i], sep=""), moslist) 
 } 
 close(moslist) 
 # generate temporary mosaic: 
 COMMAND=paste(MRTDIR, 'mrtmosaic.exe -i ', MOSname, '.list.prm -s "1 0 0 0 0 
0 0 0 0 0 0" -o ', MOSname, '.mosaic.hdf', sep="") 
 shell( cmd=COMMAND) 
 
########################################################## 
 # See Appendix A of MRT documentation for  
 # format of parameter file 
 # resample to epsg=3005 
 # This is BC Albers Equal Area Conic 
 parfile = file(paste(MOSname, ".proj", ".prm", sep=""), open="wt") 
 write(paste('INPUT_FILENAME = ', MOSname,'.mosaic.hdf', sep=""), parfile)  
 write('  ', parfile, append=TRUE)  
 write('SPECTRAL_SUBSET = ( 1 )', parfile, append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write('SPATIAL_SUBSET_TYPE = OUTPUT_PROJ_COORDS', parfile, 
append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write('SPATIAL_SUBSET_UL_CORNER = ( 637278.0 1701350.0 )', parfile, 
append=TRUE) 
 write('SPATIAL_SUBSET_LR_CORNER = ( 1907278.0 335350.0 )', parfile, 
append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write(paste('OUTPUT_FILENAME = ', MOSname, '.mosaic.tif', sep=""), parfile, 
append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write('RESAMPLING_TYPE = NEAREST_NEIGHBOR', parfile, append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write('OUTPUT_PROJECTION_TYPE = AEA', parfile, append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write('OUTPUT_PROJECTION_PARAMETERS = ( ', parfile, append=TRUE) 
 write(' 0.0 0.0 50.0', parfile, append=TRUE) 
 write(' 58.5 -126.0 45.0', parfile, append=TRUE) 
 write(' 1000000.0 0.0 0.0', parfile, append=TRUE) 
 write(' 0.0 0.0 0.0', parfile, append=TRUE) 
 write(' 0.0 0.0 0.0 )', parfile, append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write('DATUM = NAD83', parfile, append=TRUE) 
 write('  ', parfile, append=TRUE) 
 write('OUTPUT_PIXEL_SIZE = 250', parfile, append=TRUE) 
 write('  ', parfile, append=TRUE) 
 close(parfile) 
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      # Run resampler 
 COMMAND=paste(MRTDIR, 'resample -p ', MOSname, ".proj.prm", sep="") 
 shell(cmd=COMMAND) 
 GDALinfo(paste(MOSname,".mosaic.250m_16_days_NDVI.tif", sep='') ) 
 
} 
 
########################################################## 
########################################################## 
 
##  3) Process rasters to create time-series of values from mosaics 
##Created by David Hill 
 
########################################################## 

WD = 'F:/MScThesis/IndStd/Rproj/' 
MOSDIR = paste(WD,'mosaic/', sep= '') 
 
########################################################## 
 
# load raster library 
# raster provides raster data processing support 
install.packages('raster') 
library(raster) 
 
########################################################### 
load rgdal library 
# rgdal provides bindings to Frank Warmerdam's  
# Geospatial Data Abstraction Library (GDAL) (>= 1.6.3)  
# and access to projection/transformation operations  
# from the PROJ.4 library.  
install.packages('rgdal') 
library(rgdal) 
 
#file holding site locations 
LOCATIONS = paste (WD,'ndvisitelocations.txt', sep='') 
LATLONG = read.table(LOCATIONS, header=FALSE, as.is=TRUE) 
LATLONG 
ALLNDVIplot = NULL 
for( j in 1:length( LATLONG[,1] ) ){ 
#j=2 # for debug # this and dont run above 
 TargetLat = LATLONG [j,2] 
 #TargetLat = 50.67611 
 TargetLon = LATLONG [j,3] 
 #TargetLon = -120.3408 
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 # FILE HOLDING TILE FILE NAMES 
 TFILE = paste(WD,'hdffilelist.txt', sep='')  
 TFILE 
 
  
 ############################### 
 # Reproject Target Lat/Long to BC Albers 
 ptsBCAlb<-project(cbind(TargetLon,TargetLat),  "+init=epsg:3005") 
 ptsBCAlb 
  
  
 ######################################## 
 # read names  
 NAMES = read.table(TFILE, header=FALSE, as.is=TRUE) 
 NAMES 
 
  
 ####################################### 
 # Process each image and extract EVI 
 NDVI=NULL 
 for( i in 1:length( NAMES[,1] ) ){ 
  RFILE=paste(MOSDIR, NAMES[i,1], '.mosaic.250m_16_days_NDVI.tif',sep='') 
   MOSAIC<-raster( RFILE ) 
   idxCol=colFromX(MOSAIC,ptsBCAlb[1]) 
  idxRow=rowFromY(MOSAIC,ptsBCAlb[2]) 
   datestamp = as.character(NAMES[i,1]) 
   year = as.numeric( substr(datestamp,1,4) ) 
  month = as.numeric( substr(datestamp,6,7) ) 
   day = as.numeric( substr(datestamp,9,10) ) 
    
   #jdn is julian day 
   jdn =  
as.numeric(as.Date(sprintf("%d/%d/%d",month,day,year),format="%m/%d/%Y"))+2
440588 
  #  NDVI stored in raster as integer, we need to multiply by  
    #0.0001 to convert to actual NDVI value.  See scale factor on page 10 in  
   #  MODIS MOD13 product documentation (same as EVi scale factor) 
  dataRow = c( year, month, day, MOSAIC[idxRow,idxCol]*0.0001 ) 
  NDVI=rbind(NDVI,c( year, month, day, jdn, 
MOSAIC[idxRow,idxCol]*0.0001 ) ) 
 } 
  
 
########################################################## 
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########################################################## 
 
## 4) Generate data-frame of all NDVI, use LOESS function to smooth data across the 
2011-2014 time span at each pixel, calculate average NDVI for each year's growing 
season, populate raster with NDVI values for each year 
##Created by Heather Richardson 
 
########################################################### 
 
#set preferences and install packages 
install.packages('rgdal') 
library(rgdal) 
install.packages('raster') 
library(raster) 
memory.limit() #increase memory or data frame cant be created 
 
########################################################### 
 
# create data frame of all NDVI data to I can loess data across #the 2011-2014 time 
span at each pixel 
#load all rasters of mosaicked NDVI at each time period 
#use values function to list data cell by cell (row major) 
r<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.09.30.mosaic.250m_16_days_NDVI.tif")) 
s<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.10.16.mosaic.250m_16_days_NDVI.tif")) 
t<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.11.01.mosaic.250m_16_days_NDVI.tif")) 
u<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.11.17.mosaic.250m_16_days_NDVI.tif")) 
v<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.12.03.mosaic.250m_16_days_NDVI.tif")) 
w<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.12.19.mosaic.250m_16_days_NDVI.tif")) 
x<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.01.01.mosaic.250m_16_days_NDVI.tif")) 
y<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.01.17.mosaic.250m_16_days_NDVI.tif")) 
z<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.02.02.mosaic.250m_16_days_NDVI.tif")) 
aa<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.02.18.mosaic.250m_16_days_NDVI.tif")) 
ab<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.03.05.mosaic.250m_16_days_NDVI.tif")) 
ac<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.03.21.mosaic.250m_16_days_NDVI.tif")) 
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ad<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.04.06.mosaic.250m_16_days_NDVI.tif")) 
ae<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.04.22.mosaic.250m_16_days_NDVI.tif")) 
af<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.05.08.mosaic.250m_16_days_NDVI.tif")) 
ag<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.05.24.mosaic.250m_16_days_NDVI.tif")) 
ah<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.06.09.mosaic.250m_16_days_NDVI.tif")) 
ai<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.06.25.mosaic.250m_16_days_NDVI.tif")) 
aj<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.07.11.mosaic.250m_16_days_NDVI.tif")) 
ak<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.07.27.mosaic.250m_16_days_NDVI.tif")) 
al<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.08.12.mosaic.250m_16_days_NDVI.tif")) 
am<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.08.28.mosaic.250m_16_days_NDVI.tif")) 
an<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.09.13.mosaic.250m_16_days_NDVI.tif")) 
ao<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.09.29.mosaic.250m_16_days_NDVI.tif")) 
ap<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.10.15.mosaic.250m_16_days_NDVI.tif")) 
aq<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.10.31.mosaic.250m_16_days_NDVI.tif")) 
ar<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.11.16.mosaic.250m_16_days_NDVI.tif")) 
as<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.12.02.mosaic.250m_16_days_NDVI.tif")) 
at<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2012.12.18.mosaic.250m_16_days_NDVI.tif")) 
au<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.01.01.mosaic.250m_16_days_NDVI.tif")) 
av<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.01.17.mosaic.250m_16_days_NDVI.tif")) 
aw<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.02.02.mosaic.250m_16_days_NDVI.tif")) 
ax<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.02.18.mosaic.250m_16_days_NDVI.tif")) 
ay<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.03.06.mosaic.250m_16_days_NDVI.tif")) 
az<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.03.22.mosaic.250m_16_days_NDVI.tif")) 
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ba<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.04.07.mosaic.250m_16_days_NDVI.tif")) 
bb<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.04.23.mosaic.250m_16_days_NDVI.tif")) 
bc<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.05.09.mosaic.250m_16_days_NDVI.tif")) 
bd<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.05.25.mosaic.250m_16_days_NDVI.tif")) 
be<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.06.10.mosaic.250m_16_days_NDVI.tif")) 
bf<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.06.26.mosaic.250m_16_days_NDVI.tif")) 
bg<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.07.12.mosaic.250m_16_days_NDVI.tif")) 
bh<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.07.28.mosaic.250m_16_days_NDVI.tif")) 
bi<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.08.13.mosaic.250m_16_days_NDVI.tif")) 
bj<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.08.29.mosaic.250m_16_days_NDVI.tif")) 
bk<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.09.14.mosaic.250m_16_days_NDVI.tif")) 
bl<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.09.30.mosaic.250m_16_days_NDVI.tif")) 
bm<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.10.16.mosaic.250m_16_days_NDVI.tif")) 
bn<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.11.01.mosaic.250m_16_days_NDVI.tif")) 
bo<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.11.17.mosaic.250m_16_days_NDVI.tif")) 
bp<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.12.03.mosaic.250m_16_days_NDVI.tif")) 
bq<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2013.12.19.mosaic.250m_16_days_NDVI.tif")) 
br<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.01.01.mosaic.250m_16_days_NDVI.tif")) 
bs<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.01.17.mosaic.250m_16_days_NDVI.tif")) 
bt<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.02.02.mosaic.250m_16_days_NDVI.tif")) 
bu<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.02.18.mosaic.250m_16_days_NDVI.tif")) 
bv<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.03.06.mosaic.250m_16_days_NDVI.tif")) 
bw<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.03.22.mosaic.250m_16_days_NDVI.tif")) 
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bx<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.04.07.mosaic.250m_16_days_NDVI.tif")) 
by<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.04.23.mosaic.250m_16_days_NDVI.tif")) 
bz<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.05.09.mosaic.250m_16_days_NDVI.tif")) 
ca<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.05.25.mosaic.250m_16_days_NDVI.tif")) 
cb<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.06.10.mosaic.250m_16_days_NDVI.tif")) 
cc<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.06.26.mosaic.250m_16_days_NDVI.tif")) 
cd<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.07.12.mosaic.250m_16_days_NDVI.tif")) 
ce<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.07.28.mosaic.250m_16_days_NDVI.tif")) 
cf<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.08.13.mosaic.250m_16_days_NDVI.tif")) 
cg<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.08.29.mosaic.250m_16_days_NDVI.tif")) 
ch<- values(raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2014.09.14.mosaic.250m_16_days_NDVI.tif")) 
 
# add raster values to dataframe and transpose df so each row represents a different 
time period 
t.df <- t(data.frame(r, s, t, u, v, w, x, y, z, aa,
 ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al,
 am, an, ao, ap, aq, ar, as, at, au, av, aw, ax,
 ay, az, ba, bb, bc, bd, be, bf, bg, bh, bi, bj,
 bk, bl, bm, bn, bo, bp, bq, br, bs, bt, bu, bv,
 bw, bx, by, bz, ca, cb, cc, cd, ce, cf, cg,
 ch)) 
 
########################################################### 
 
#  smooth data across the 2011-2014 time span at each pixel 
#first, transpose data in data frame so each day is a column (aka the y data) ; then add 
the julian days as the first column 
#use this FILE to get julian dates for each pixel and create an 'x' column in the data 
frame  
FILE = 'F:/MScThesis/IndStd/Rproj/NDVItable.txt' 
FILE 
mydata <- read.table(FILE, header=TRUE, as.is=TRUE) 
mydata  
x <- mydata$x1[18:86] #julian dates 
y <- as.matrix(t.df) #NDVI values 
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a = FALSE  
for (i in 1:ncol(y)){ 
    ndvi.loess <- loess(formula(y[,i]~x), type='smooth',span = 0.1) 
 ndvi.predict <- predict (ndvi.loess, data.frame(x=x))     
 plot(x, ndvi.predict) 
 write(ndvi.predict, file="F:/MScThesis/IndStd/Rproj/ndvi.loess.bc.dat", sep=",", 
append=a, ncol=length(ndvi.predict)) 
 a=TRUE 
} 
 
####notes: I had to use write() instead of print() so that each iteration of the loop 
would write one new row of data into the file. Print() creates a variable that grows and 
must be rewritten each iteration. Since there are 28mil pixels in the raster files and 
therefore 28mil iterations of the loop, the print() function eventually crashed the 
computer.  
 
########################################################### 
#now read the table written in the loop, back in 
# use colClasses and nrows so table reads in faster 
tab5rows <- read.table("F:\\MScThesis\\IndStd\\Rproj\\ndvi.loess.bc.dat", header = 
FALSE, sep=",", nrows = 5) 
tab5rows 
classes <- sapply(tab5rows, class) 
result <- read.table("F:\\MScThesis\\IndStd\\Rproj\\ndvi.loess.bc.dat", sep=",", 
header=FALSE, colClasses=classes, nrows = 27757120) 
 
#apply .0001 conversion factor and transform log(n+1) 
#get growing season averages for each year 
#to create rasters with the appropriate projection, dimensions, and reference, import a 
filler raster 
#then populate it with the NDVI GS averages and organize it in the correct order 
r1 <- log((result[,14:23]*.0001)+1) 
NDVI_GS_2012 <- rowMeans(r1,na.rm=TRUE) 
a<- raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.01.01.mosaic.250m_16_days_NDVI.tif") 
values(a) = NDVI_GS_2012 
writeRaster(a, "F:/MScThesis/IndStd/Rproj/NDVI_GS_2012_1", format = "GTiff") 
r2 <- log((result[,37:46]*.0001)+1) 
NDVI_GS_2013 <- rowMeans(r2,na.rm=TRUE) 
b<- raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.01.17.mosaic.250m_16_days_NDVI.tif") 
values(b) = NDVI_GS_2013 
writeRaster(b, "F:/MScThesis/IndStd/Rproj/NDVI_GS_2013_2", format = "GTiff") 
r3 <- log((result[,60:69]*.0001)+1) 
NDVI_GS_2014 <- rowMeans(r3,na.rm=TRUE) 
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c<- raster("F:/MScThesis/IndStd/Rproj/mosaicNDVI2011-
2014/2011.02.02.mosaic.250m_16_days_NDVI.tif") 
values(c) = NDVI_GS_2014 
writeRaster(c, "F:/MScThesis/IndStd/Rproj/NDVI_GS_2014_2", format = "GTiff") 
 
########################################################### 
 
##Final notes: It would be better to first run 'Set Null' tool in ArcGIS to remove error 
codes before running loess function. Also, batch clip all mosaics in ArcGIS to smallest 
extent possible before running this function. In my case, it would have saved days.  
 
############################################################ 
############################################################ 
 
##5) Soil Carbon Predictions with Random Forest 
##Purpose: load all raster layers, create data frame for Random Forest to call 'predict' 
function on, and generate predictive maps for soil carbon and soil organic carbon 
##Created by Heather Richardson 
 
############################################################
# 
 
#set preferences and install packages 
install.packages('rgdal') 
library(rgdal) 
install.packages('raster') 
library(raster) 
install.packages('randomForest') 
library(randomForest) 
set.seed(415) ## Because the process bags and bootstaps data, it is a good idea to set 
the random seed in R before you begin. This makes your results reproducible next time 
you load the code up, otherwise you can get different classifications for each run. 
memory.limit() #increase memory or data frame cant be created 
 
############################################################ 
 
#load all raster layers 
#NDVI has been pre-processed in previous code and all other layers have been pre-
processed in ArcGIS 
#all layers have been transformed, clipped to the same extent, and projected into BC 
Albers projection with ModelBuilder 
NDVI2013GS_AV = values(raster("F:\\MScThesis\\MapData\\tc_NDVI20131.tif")) 
NDVI2014GS_AV =values(raster("F:\\MScThesis\\MapData\\tc_NDVI20141.tif")) 
MAP = values(raster("F:\\MScThesis\\MapData\\tc_map1.tif")) 
MAT = values(raster("F:\\MScThesis\\MapData\\tc_mat1.tif")) 
SLOPE = values(raster("F:\\MScThesis\\MapData\\tc_slope1.tif")) 
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ELEVATION = values(raster("F:\\MScThesis\\MapData\\tc_elevation1.tif")) 
ASPECT = values(raster("F:\\MScThesis\\MapData\\tc_aspect1.tif")) 
GrassComm = values(raster("F:\\MScThesis\\MapData\\t_vegcomm1.tif")) 
SoilDrain = values(raster("F:\\MScThesis\\MapData\\tc_soildrain1.tif")) 
SoilType = values(raster("F:\\MScThesis\\MapData\\tc_soiltype1.tif")) 
 
############################################################ 
 
df <- data.frame(NDVI2013GS_AV,NDVI2014GS_AV,MAP, MAT, SLOPE, ELEVATION, 
ASPECT, GrassComm, SoilDrain, SoilType) 
write.table(df, file="F:/MScThesis/IndStd/Rproj/RFdf.txt", sep=",") 
 
############################################################ 
 
#load training data for RF 
FILE = paste (WD,'2013master_transform_training.txt', sep = '') 
FILE 
mydata <- read.table(FILE, header=TRUE, sep="\t") 
mydata 
 
############################################################ 
 
#run RF and get predicted values  
rffit <- randomForest(SOC_0.10_LW_2013 ~ ASPECT + SLOPE + ELEVATION+ MAT+ 
MAP + SoilType + SoilDrain + GrassComm +  NDVI2013GS_AV, data=mydata, 
importance=TRUE, ntree=501, na.action=na.roughfix) 
#varImpPlot(rffit) 
print(rffit) 
importance(rffit) 
Prediction <- predict(rffit, df)# prediction based on dataframe of all raster layers 
 
############################################################ 
 
#write new raster layers based on Predictions from RF 
#use a random raster layer to set the appropriate extent and project 
#population raster with values from prediction 
a<- raster("F:\\MScThesis\\MapData\\tc_soiltype1.tif") 
values(a) = Prediction 
writeRaster(a, "F:/MScThesis/IndStd/Rproj/RF_socf13_3", format = "GTiff") 
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APPENDIX C: PREDICTIVE MAPS 

 
Figure C.1: Predicted Soil Carbon (SC(%)) values, based on the Random Forest results for 2013 fenced systems. 
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Figure C.2: Predicted Soil  Carbon (SC(%)) values, based on the Random Forest results for 2014 fenced systems. 
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Figure C.3: Predicted Soil  Carbon (SC(%)) values, based on the Random Forest results for 2013 grazed systems. 
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Figure C.4: Predicted Soil  Carbon (SC(%)) values, based on the Random Forest results for 2014 grazed systems. 
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Figure C.5: Predicted Soil Organic Carbon (SOC(g/kg)) values, based on the Random Forest results for 2013 fenced 

systems. 
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Figure C.6: Predicted Soil Organic Carbon (SOC(g/kg)) values, based on the Random Forest results for 2014 fenced 

systems. 
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Figure C.7: Predicted Soil Organic Carbon (SOC(g/kg)) values, based on the Random Forest results for 2013 grazed 

systems. 
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Figure C.8: Predicted Soil Organic Carbon (SOC(g/kg)) values, based on the Random Forest results for 2014 grazed 

systems. 
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Figure C.9: Predicted Soil Carbon (SC(%)) values, based on the Linear Stepwise Regression results for 2013 fenced systems. 

SC= -8.22 + 0.78(Elevation) +0.71(MAP)  
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Figure C.10: Predicted Soil Carbon (SC(%)) values, based on the Linear Stepwise Regression results for 2014fenced 

systems. SC= -13.50 + 1.11(Elevation) +0.50(MAT) + 0.99(MAP) + 1.74(NDVIMODIS) 
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Figure C.11: Predicted Soil Carbon (SC(%)) values, based on the Linear Stepwise Regression results for 2013 grazed 

systems. SC= -4.06 + 0.52(Elevation) + 1.89(NDVIMODIS) +0.52(Soil Drainage)
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Figure C.12: Predicted Soil Carbon (SC(%)) values, based on the Linear Stepwise Regression results for 2014 grazed 

systems. SC= -15.86 + 1.31(Elevation) +0.75(MAT) + 1.02(MAP) +2.05(NDVIMODIS) 
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Figure C.13: Predicted Soil Organic Carbon (SOC(g/kg)) values, based on the Linear Stepwise Regression results for 2013 

fenced systems. SC= -4.06 + 0.52(Elevation) + 1.89(NDVIMODIS) + 0.52(Soil Drainage) 
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Figure C.14: Predicted Soil Organic Carbon (SOC(g/kg)) values, based on the Linear Stepwise Regression results for 2014 

fenced systems. SC= -13.96 + 1.50(Elevation) + 0.89 (MAP) 
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 Figure C.15: Predicted Soil Organic Carbon (SOC(g/kg)) values, based on the Linear Stepwise Regression results for 
2013grazed systems. SC= -2.23 + 0.38(Elevation) + 0.82(NDVIMODIS) 
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Figure C.16: Predicted Soil Organic Carbon  (SOC(g/kg)) values, based on the Linear Stepwise Regression results for 

2014grazed systems. SC= -8.60 + 1.55(Elevation) -0.28(Slope) 
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APPENDIX D: GRASS SPECTRAL SIGNATURES 

 

Figure D: Spectral Signatures of Grassland Monocultures in Lac du Bois, Kamloops, BC, 
Canada. Signatures derived from MSR (MSR16R, Cropscan Inc). Data collected August 
2014 with Simon Oliver.  
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APPENDIX E: SUPPLEMENTAL RESOURCES 

Project website:  

https://grazingmgtandclimatechange.wordpress.com/ 

Interactive map of site locations online: 

http://soilcarbonsequestrationproject.websitesofcanada.com/  

Interactive map of site locations kml file: 

https://sites.google.com/site/googsitemap/home/google-earth-

maps/heathsitemap2.kml?attredirects=0&d=1  

High resolution maps of predicted soil carbon and soil organic carbon: 

https://sites.google.com/site/predictionmaps/maps  

 

https://grazingmgtandclimatechange.wordpress.com/
http://soilcarbonsequestrationproject.websitesofcanada.com/
https://sites.google.com/site/googsitemap/home/google-earth-maps/heathsitemap2.kml?attredirects=0&d=1
https://sites.google.com/site/googsitemap/home/google-earth-maps/heathsitemap2.kml?attredirects=0&d=1
https://sites.google.com/site/predictionmaps/maps

