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ABSTRACT 

British Columbia’s (BC) grasslands are home to 30 percent of the province’s species at risk 

and are one of Canada’s most endangered ecosystems. In BC’s Southern interior, human activities 

such as mining, recreation, and in certain instances, heavy livestock grazing, are altering grassland 

ecosystems; the increased soil disturbance may leave them susceptible to the colonization of invasive 

species. Invasive species can cause changes to native plant communities and nutrient cycling, and by 

doing so, may alter the amount and quality of habitat available for animals such as arthropods. 

Arthropods are diverse and contribute to energy flow and nutrient cycling, and are therefore an 

important group to study as a way of determining the effects of changes to ecosystem function. 

Spotted knapweed (Centaurea stoebe L.), a perennial forb native to Eastern Europe, is considered 

one of the most ecologically harmful invasive species in Western North America. The objectives of 

this study were (1) to determine if spotted knapweed is altering arthropod community structure and 

density in grassland habitats; and (2) to DNA metabarcode all arthropod specimens collected using 

methodology that could be implemented to expedite site restoration efforts. To address these 

objectives, pitfall traps were installed at sites that were colonized, in differing densities, by spotted 

knapweed, and DNA metabarcoding was conducted on specimens collected.   

The results suggest that spotted knapweed density indirectly correlates with arthropod 

functional groups through changes in plant community composition. These indirect effects show 

different correlations between the functional groups; suggesting that both top down and bottom up 

control is at play upon the introduction of spotted knapweed. Decreases in herbivore and detritivore 

biomass was associated with increasing spotted knapweed density. Omnivore, predator, and parasite 

biomass had more intricate interactions. DNA metabarcoding results indicated a more complex 

interaction between Orthoptera and spotted knapweed density than suggested by a simple positive 

correlation. All other arthropod orders sampled were not obviously influenced by spotted knapweed. 

This study describes a relatively rapid and inexpensive technique for monitoring arthropod 

biodiversity with a DNA metabarcoding methodology applicable to both invasive species 

conservation efforts and for guiding remediation work in disturbed grassland sites. 

Keywords:  Invasive plant, arthropod, functional groups, metabarcoding, grassland, reclamation, 

remediation 
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CHAPTER 1: GENERAL INTRODUCTION 

The introduction and spread of invasive plants is a global ecological concern (Vitousek et 

al. 1996). Alterations to native plant communities and nutrient cycling, which can occur with the 

invasion of non-native plants (Vitousek et al. 1996), can alter the amount and quality of habitat 

available for animals at multiple trophic levels, including arthropods (Litt et al. 2014). When 

non-native plants are introduced into an area, they are often able to colonize at very high rates 

compared to native plants. It is suggested that because many invasive plant species lack 

predators in their new environments they are able to grow unrestrained as described by the 

enemy-free hypothesis (Andonian et al. 2011; Siemann et al. 2006). This typically leads to 

increased dominance of invasive plants and decreased productivity and diversity of native plants 

(Bartomeus et al. 2008).  

Grasslands 
Natural grasslands make up less than 1% of British Columbia’s land mass, are one of the 

most endangered ecosystems in Canada, and are highly susceptible to changes in ecosystem 

energy flows upon introduction of invasive plants (Fraser and Carlyle 2011). Grasslands provide 

invaluable services to people and the environment including carbon sequestration (Wilson 2009; 

Costanza et al. 1998), water filtration (Wilson 2009), wildlife management, forage for grazing 

livestock (Havstad 2008), and recreational areas. However, the use of grasslands by humans is 

leading to the anthropogenic spread of invasive plants, causing a decline in plant and animal 

biodiversity (e.g. Litt and Steidl 2010; Hansen et al. 2009). 

Arthropods 
Arthropod community biomass and composition is largely dependent on plant community 

density and composition (Haddad et al. 2001). Therefore, changes to plant community, biomass, 

or composition, caused by the introduction of invasive plants, could largely affect arthropod 

communities because many arthropod species need specific plants for their diet or as sites for 

reproduction and protection (Tallamy et al. 2010).  Native arthropods may not recognize or be 

able to use non-native plants as a resource (Tallamy 2004), which could lead to changes in 

diversity and biomass of insect communities (Litt et al. 2014). 

Arthropods, which make up the majority of animal species in terrestrial habitats 

(Havastad 2008), are an important group to study as a way of determining the effects of 
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environmental changes to ecosystem functioning. Insect guilds can be affected differently by 

changes in plant community structures in response to the introduction of invasive plant species 

(Litt et al. 2014). For example, an herbivorous insect that feeds only on a particular native plant 

that is being outcompeted by an invasive plant would be affected by the invasive plant, whereas 

a predatory insect feeding on the herbivore may also be indirectly affected through a decrease in 

its food source (Litt et al. 2014). Studying the effects of plant community changes on specific 

insect guilds may give us insight into trophic level interactions throughout arthropod food chains. 

Spotted knapweed 
Spotted knapweed (Centaurea stoebe L. subsp. micranthos; (Ochsmann 2001)) is an 

invasive perennial forb introduced from Europe to Northwestern North America in the 1890s 

(Fraser and Carlyle 2011). It is a large taprooted plant that grows to the height of 0.2-1.8 m, with 

solitary pink, purple, or occasionally cream-coloured flowering heads at the ends of branches 

(Province of British Columbia 2002). The principal stem leaves are divided pinnately and have 

smooth margins that narrow toward the top of the shoot. The deeply lobed rosette leaves are up 

to 15 cm long (Figure 1.1). 

 

1Figure 1.1 Spotted knapweed (Centaurea stoebe L.)  

Image source: https://search.creativecommons.org/ 

Spotted knapweed outcompetes native plants in disturbed North American grasslands, 

which lowers available wildlife and livestock forage, and alters availability of soil mineral 

nutrients (Fraser and Carlyle 2011). Hill et al. (2006) found that spotted knapweed can have a 

greater ability to uptake soil water than native grasses such as Bluebunch wheatgrass 
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(Pseudoregneria spicata) and Western wheatgrass (Pascopyrum smithii). Spotted knapweed is 

thought to secrete allelochemicals through its roots into surrounding soils that can shift microbial 

community structure and function, increase soil phosphorus and potassium availability (Thorpe 

et al. 2006), and reduce soil nitrogen availability for surrounding plants to uptake (Suding et al. 

2004). This can hinder the growth of native plants by changing essential nutrient availability, 

resulting in functional ecosystem changes that may impact arthropods by reducing plant biomass 

and increasing bare ground compared with grasslands without spotted knapweed. 

DNA metabarcoding 
DNA metabarcoding is a method that can be used to assess biodiversity of microbial, 

plant, animal, and insect communities. The approach combines two technologies: high-

throughput DNA sequencing and phylogenetics (Ji et al. 2013). DNA metabarcoding methods 

allow researchers to differentiate specimens of animals, plants, and fungi using short sequences 

of DNA, also known as ‘DNA barcodes’. To differentiate animals, a 658 base pair sequence in 

the mitochondrial cytochrome c oxidase subunit I gene (COI) is used as a phylogenetic marker 

(Ji et al. 2013). Following amplification and sequencing of target genes from specimen genomic 

DNA or environmental metagenomic DNA, computation methods can be used to group 

sequences into Operational Taxonomic Units (OTUs), which, under ideal conditions, represent 

individual species. Online public databases, such as the Barcode of Life Database (BOLD), 

which is a growing global public reference library of species identifiers 

(http://www.barcodeoflife.org), can be used to assign taxonomies to the calculated OTUs using 

sequence alignment methodologies.  

Databases such as BOLD are established using DNA barcoding methods. DNA barcoding 

for plants, animals, and arthropods involves morphologically identifying specimens, sequencing 

individual barcode genes, and assigning those data unique Barcode Index Numbers (BINs). DNA 

barcoding of individual specimens uses Sanger sequencing (Sanger et al. 1977) to obtain high 

quality amplicon sequences (Gibson et al. 2014).  All known specimens are assigned a BIN, 

which is used as a proxy for a formal Linnaean species name. Official BINs in databases are 

associated with curated specimens that have been morphologically identified by subject matter 

experts.  

http://www.barcodeoflife.org/
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Sanger sequencing technology, used in DNA barcoding, is limited to sequencing a single 

gene fragment per specimen per sequencer lane (Ji et al. 2013). While some modern sequencers 

using Sanger chemistry can handle 16 plates each containing 384 wells, this is considered a low 

throughput sequencing approach as each specimen must be processed individually. High-

throughput sequencing technologies used for DNA metabarcoding can simultaneously sequence 

millions of individual DNA molecules from a mixture of specimens (Kircher and Kelso 2010) 

(Figure 1.2). DNA metabarcoding, as described extensively by Ji et al. (2013), uses degenerate 

Polymerase Chain Reaction (PCR) primers that target a diversity of arthropod species, to mass-

amplify a barcode gene (such as the COI gene) from large mixed samples of organisms 

simultaneously. PCR products, or amplicons, can then be sequenced en masse using a high-

throughput sequencer. Each individual specimen in the sample results in the production of 

numerous amplicons that are, following sequencing, clustered into OTUs (Ji et al. 2013). From 

there, researchers can refer to online databases to assign specimen taxonomic identifiers. 

 

 2Figure 1.2. Visual representation of the methods of DNA barcoding and DNA metabarcoding. 

Image source: modified from https://search.creativecommons.org/ 

Identifying individual species morphologically can be time consuming and expensive; 

usually an experienced taxonomist is needed. If a specimen is damaged or is in an immature 

stage of development, even specialists may be unable to accurately identify certain specimens 
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(Gibson et al. 2015). Once methods are developed, DNA metabarcoding can be less time 

consuming when dealing with large numbers of samples, and most researchers are able to take 

tissue samples from specimens for DNA extraction and amplicon sequencing. DNA 

metabarcoding is a way to advance large-scale arthropod sampling for purposes such as 

conducting environmental assessments or for monitoring site remediation.  If we are able to 

sample and characterize diverse arthropod communities, we will have a better understanding of 

how ecosystems should function following anthropogenic and natural disturbances. 

Objectives 
The objective of Chapter 2 was to determine if the density of spotted knapweed patches 

influence the community composition of arthropods in a semi-arid grassland ecosystem. I 

morphologically identified arthropods and grouped into functional guilds (using Marshall 2006). 

I compared differences in biomass, species richness, and functional diversity of arthropod guilds 

caught in pitfall traps with differing spotted knapweed density to determine if epigeal arthropods 

are affected by the density of spotted knapweed patches. I hypothesized that herbivore and 

omnivore guild species richness and biomass would decrease in the presence of spotted 

knapweed, leading indirectly to decreases in predator and parasite guild biomass due to changes 

in prey items. I also hypothesize that detritivore biomass would increase due to increasing dead 

plant litter that has been associated with the colonization of spotted knapweed in past studies 

(Alerding and Hunter 2013). 

In Chapter 3, I implemented DNA metabarcoding methods (Hebert et al. 2003) to 

determine if knapweed biological control agents, like Larinus (Coleoptera: Curculionidae), or 

how taxa such as Orthoptera or Coleoptera were affected by the density of spotted knapweed. 

This project will be used to help investigate DNA metabarcoding as a fast and cost-effective 

method to expedite large-scale arthropod sampling following site remediation efforts. 

 Chapter 4 presents general research conclusions, future research, and management 

implications that could be applied based on the findings from this study.  
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CHAPTER 2: ARE ARTHROPOD COMMUNITIES IN GRASSLAND ECOSYSTEMS 

AFFECTED BY THE ABUNDANCE OF AN INVASIVE PLANT? 

INTRODUCTION 

There are more than 13,000 alien plant species in the world but only about a tenth are 

invasive, imposing negative effects on an area’s economy, public health, and environment (van 

Kleunen et al. 2015). Plant species invasions are a global conservation concern, leading to 

changes in native plant community composition and soil chemistry (Vitousek et al. 1996; 

Ehrenfeld 2003).  

Arthropods represent the group with the largest animal biomass and make up the majority 

of animal species in terrestrial habitats (Havastad 2008), including grasslands. They contribute to 

ecosystem function in their roles as pollinators, foragers, soil engineers, and food for other 

organisms (Higgins and Lindgren 2006; Bourn and Thomas 2002; Tscharntke and Greiler 1995). 

The diversity of functional roles of arthropod communities in grasslands makes them useful 

groups when trying to understand changes to ecosystem structure with the introduction of 

invasive plants. 

 At least 90% of arthropod herbivores feed on plants in a single family or a few genera 

(Bernays and Graham 1988). With the decrease in native plant diversity, due to colonization by 

invasive plants, subsequent decreases in the diversity of native herbivore and omnivore 

arthropods have been observed (Litt et al. 2014; Vila et al. 2011). However, Tallamy et al. 

(2010) found that invasive plants, such as Norway maple and crepe myrtle, can potentially 

support generalist North American herbivore arthropod species in certain circumstances, such as 

in urban environments. Litt and Steidl (2010) observed decreases in overall abundance and 

richness of arthropods with increasing nonnative grasses in a grassland ecosystem. Although the 

response of overall herbivore and omnivore diversity to non-native plant invasion is hard to 

predict, generalist species are less diverse but far more abundant than specialist species (Tallamy 

2004).  

Indirectly, predator and parasite arthropod guilds can be adversely affected by changes in 

prey items or vegetation structure due to the colonization of invasive plants (Gratton and Denno 
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2005). This may lead to subsequent changes in ecosystem services due to the decline of these 

arthropod groups. However, detritivore arthropod biomass might increase due to an alien plant 

invasion because increases in decaying ground litter associated with highly productive invasive 

plants with palatable high-nutrient leaf tissue could provide extra food (Levin et al. 2006). It is 

nevertheless expected that any changes to native arthropod diversity, such as decreases in the 

diversity of all arthropod guilds except detritivores, would lead to changes in guild dynamics. 

This could result in a chain of effects throughout the ecosystem (Grant et al. 2017; Pearson 

2009). For example, decreases in predators could act as a top-down control for the population of 

their preys’ population being unrestrained by predation. Alternatively, herbivores could become 

less dense due to bottom-up control of limited native plant biomass for consumption with the 

introduction of plant competition.  

Grasslands are one of the most endangered ecosystems in Canada and are highly 

susceptible to changes in ecosystem energy flows due to the introduction of invasive plants 

(Aguair 2005). Grasslands provide invaluable services to people and the environment including 

carbon sequestration (Wilson 2009; Costanza et al. 1998), water filtration (Wilson 2009), 

wildlife management, forage for grazing livestock (Aguair 2005), and recreational areas. 

However, the use of grasslands by humans, in the form of both permanent changes to the 

ecosystem and changes to natural disturbance regimes, is leading to the anthropogenic spread of 

invasive plants such as spotted knapweed, altering plant and animal biodiversity (Mack et al. 

2000).  

Centaurea stoebe L. subsp. micranthos (spotted knapweed) is a deeply tap-rooted 

perennial forb native to Eastern Europe that was first introduced into North America in the 1890s 

(Fraser and Carlyle 2011). It is considered one of the most ecologically harmful invasive plant 

species in Western North America (Hansen and Ortega 2009). Spotted knapweed is an extremely 

competitive plant in part due to high seed production rates and the ability of seeds to remain 

viable for eight years or more (Davis et al. 1993). Spotted knapweed is also able to alter soil 

properties by elevating phosphorous within its rhizosphere and by decreasing bioavailable soil 

carbon and nitrogen pools (Fraser and Carlyle 2011). Spotted knapweed is suspected of releasing 

allelopathic chemicals through its roots, allowing it to spread rapidly by making the soil 

inhospitable to native plant species (Callaway and Ridenour 2004). Spotted knapweed primarily 
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colonizes grassland communities by forming dense, almost-monoculture stands once established 

(Hansen and Ortega 2009). This study explores the effects of differing densities of spotted 

knapweed on the functional groups of grassland arthropods in the semi-arid grasslands of 

Southern Central British Columbia. Research contributing to our understanding of invasive 

plants is important in informing conservation management strategies essential for combatting the 

spread of invasive plants to reduce biodiversity loss. 

We predict that spotted knapweed density will have differing effects on the biomass of 

arthropod functional groups. We hypothesize that herbivore and omnivore functional group 

biomass will decrease in the presence of spotted knapweed. This will lead indirectly to decreases 

in predator and parasite biomass due to changes in abundance or diversity of prey items. 

Detritivore biomass is hypothesized to increase with increasing spotted knapweed density due to 

the increase in food availability and plant litter, with the colonization of spotted knapweed 

(Alerding and Hunter 2013). 

METHODS 

Study area 
In May 2017, arthropod sampling sites were established in the upper grasslands of Lac du 

Bois (LDB) (Figure 2.1), a 15,000-ha grassland area located Northwest of Kamloops, British 

Columbia (BC) (50⁰39’59’’ N, 120⁰19’09’’ W). LDB is a protected shortgrass and shrub-steppe 

ecosystem that occurs in the rain shadow of the BC Coast Mountains. The park and surrounding 

region is characterized as semiarid, with annual precipitation of 277.6 mm, (including 63.5 cm of 

snowfall). Average annual daily temperature for the region is 9.3⁰C (Environment Canada 2010). 

Dominant grasses in the region include bluebunch wheatgrass (Pseudoroegneria spicata) and 

rough fescue (Festuca altaica). Common shrubs include big sagebrush (Artemisia tridentata), 

rabbit brush (Ericameria nauseosa), prickly rose (Rosa acicularis) and grey horsebrush 

(Tetradymia canescens) (Lee et al. 2014). LDB is a multi-use area managed for recreation, 

wildlife, and livestock grazing at low to moderate stocking rates (Bassett and Fraser 2015; 

Schmidt et al. 2012; Evans 2011). The continuous use of the grasslands by recreational users and 

ranchers leaves the area susceptible to the introduction of invasive plants through high propagule 

pressure such as hitchhiking seeds attached to clothing, boots, vehicle tires, and other means. 

This makes it an important study area due to the numerous invasive plants currently in the park 
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(eg. Fraser and Carlyle 2011; BC Forest Services 1999) and the potential for further human seed 

dispersal of invasive species. 
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3Figure 2.1. Location of sampling sites in the upper grasslands of Lac du Bois Grasslands protected area, Northwest of Kamloops, British 
Columbia, Canada. 

Image source:  Google Earth
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4Figure 2.2. Diagram of a sweep netting transect and placement of the pitfall traps at one sampling site 
infested with purple-flowered spotted knapweed. 

Image source: modified from https://search.creativecommons.org/ 

Site selection 
Twenty 40 m diameter sampling sites were located in the LDB grasslands with varying 

densities of spotted knapweed: ‘None’ (0-1 stems m-2), ‘Low’ (2-44 stems m-2), ‘Medium’ (45-

69 stems m-2), and ‘High’ (>70 stems m-2) (Fig. 2.1). The sites were all located within <2 km2 

(Fig 2.1) to ensure that they shared similar ecosystem properties to allow observed differences to 

be more meaningful (Bode and Maciejewski 2014). 

Sampling protocol 
In the centre of each sampling site, 4 pitfall traps were installed in a square arrangement, 

each 2 m apart (Figure 2.2).  Pitfall traps are small epigeal arthropod collection traps that consist 

of a collection cup (11.5 cm diameter, 7.5 cm depth) dug into the earth flush with ground level 

(Bassett and Fraser 2015) (Figure 2.3). The collection cups were filled with 87% denatured 

ethanol solution to preserve the specimens for DNA analysis. Plywood cover boards (30 cm × 35 

cm) were placed approximately 5-10 cm above each pitfall trap to reduce ethanol evaporation. 

Spotted knapweed seedlings emerge in early May (Schirman 1981). The pitfall traps were 
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opened for a period of five days each month, in the last week of May, June, July, and August 

2017. 

 
5Figure 2.3. Photos of a pitfall trap (a) and a sweep net survey (b). 

Image source: J. Foster 

In Addition, at the end of each 5-day period, a 30 cm-diameter canvas wire-frame sweep 

net was used to capture insects along a 20 m transect with 35 sweeps across each site. Sweep 

netting collected foliar arthropods on top of all plants in each patch to give a better representation 

of the arthropod community interacting with spotted knapweed plants (Doxon et al. 2011).  All 

sweep net surveys were completed on days with wind velocities <10 km/h to increase the 

probability that arthropods remained on the foliage. Sweep net surveys were conducted by the 

same researcher to ensure consistency between sites and sampling dates. The sweep net samples 

were not used in Chapter 2, but retained for DNA metabarcoding in Chapter 3 

Spotted knapweed has been observed to increase soil temperature and surface water 

runoff (Fraser and Carlyle 2011; Lacey et al. 1989). As arthropod species can be highly affected 

by changes in temperature (Bokhorst et al. 2008), it is important to consider this additional 

covariable in the experimental set up. Soil temperature data loggers (DS1921G-F#5 Maxim 

Integrated, San Jose, CA, USA) were installed at 5 cm depth in the centre of each site, and these 

were set to record soil temperature at 2-hour intervals.  

Vegetation was sampled June 20-28th, 2017 at each of the twenty sites. 1 m × 1 m 

quadrats were placed two metres North of each pitfall trap, totalling eighty quadrats. Within each 
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quadrat, counts were made of the number of spotted knapweed stems and the percent cover of all 

plants, bare ground, and litter were recorded. All plant species in each quadrat was identified and 

the percent cover of each species within the quadrat was recorded. Additionally, live standing 

biomass was quantified by clipping all plats within a 0.5 m × 0.1 m section of each quadrat at 

ground level. The plant biomass samples were separated as spotted knapweed as one component 

and all other live plants as the other component. The plant biomass samples were stored in brown 

paper bags and dried in a Yamato oven (Model No. DKN8132) at 65⁰C for 48 hours (as per 

Bassett and Fraser 2015) and weighed with an analytical balance to the nearest 0.00001 g (Fisher 

Scientific accuseries 225D). The biomass data were then converted into g/m2. 

The Shannon-Wiener Index of plant community diversity was calculated with the species 

cover data for each plot using the equation: 

𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −𝑊𝑊𝑊𝑊𝑊𝑊𝑎𝑎𝑊𝑊𝑊𝑊 𝐷𝐷𝑊𝑊𝐷𝐷𝑊𝑊𝑊𝑊𝐷𝐷𝑊𝑊𝐷𝐷𝐷𝐷 𝐼𝐼𝑎𝑎𝐼𝐼𝑊𝑊𝐼𝐼 (𝐻𝐻) =  −�  
𝑠𝑠

𝑖𝑖
= 𝑝𝑝𝑖𝑖1

 𝑙𝑙𝑎𝑎𝑝𝑝𝑖𝑖 

The Simpson diversity index was calculated using the same data with the equation: 

𝑆𝑆𝑊𝑊𝑆𝑆𝑝𝑝𝐷𝐷𝑎𝑎𝑎𝑎′𝐷𝐷 𝑅𝑅𝑊𝑊𝑅𝑅𝑊𝑊𝑝𝑝𝑊𝑊𝑊𝑊𝑅𝑅𝑎𝑎𝑙𝑙 𝐷𝐷𝑊𝑊𝐷𝐷𝑊𝑊𝑊𝑊𝐷𝐷𝑊𝑊𝐷𝐷𝐷𝐷 𝐼𝐼𝑎𝑎𝐼𝐼𝑊𝑊𝐼𝐼 (𝐷𝐷) =  
1

∑ = 𝑝𝑝𝑖𝑖21
 𝑠𝑠

𝑖𝑖
 

Where p is the proportion (n/N) of plant biomass of a particular species (n) divided by the total 

biomass (N) and s is the number of species (see Colwell, 1988). 

Arthropod specimen sorting 
Specimens were stored in a -20⁰C freezer in 150-mL containers unique to each pitfall trap 

filled with 87% denatured ethanol. All arthropods captured in one of the four containers from 

each sampling site at each sampling date were taxonomically identified and sorted using forceps 

and sorting dishes into functional groups. The specimens were sorted based on adult life stage 

diet (using Marshall 2006). Each individual was assigned to one of the following functional 

groups: herbivore, omnivore, detritivore, predator, or parasite. After being sorted into functional 

groups, specimens were dried in an oven at 65⁰C for 48 hours and weighed with an analytical 

balance to measure biomass (as per Harrower 2016). Species richness was calculated, and 

functional Shannon-Wiener diversity and Simpson diversity were calculated using the number of 

individuals of each functional group. 
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The remaining three of the four containers from each site and the sweep net samples were 

kept in a freezer with ethanol for DNA metabarcoding (Chapter 3).   

Data analysis 
All data were analyzed statistically using RStudio integrated under R 3.4.4 “Someone to 

Lean On” (The R Foundation for Statistical Computing). The data were checked for normality 

using boxplots and residual plots. Homogeneity of variance was assessed using the Fligner-

Killeen test, and when necessary, the data were transformed using a natural logarithm 

transformation or a log (x+1) transformation for biomass and species richness data that contained 

zeros. All data analyses were tested for significance at the 5% probability level and noted within 

the 10% probability level to recognize possible trends in the data. 

A one-way analysis of variance (ANOVA) and post hoc Tukey test were done to test the 

effects of the density of spotted knapweed (no, low, medium, and high density) on the biomass, 

species richness, and functional diversity of each arthropod guild captured. The arthropod guilds 

included herbivore, omnivore, predator, detritivore, and parasite. 

 Finally, four principal components analyses (PCA) were conducted, one for each of the 

four summer months, to examine the most influential functional group associated with arthropod 

community composition. Stepwise multiple regressions in both directions using Akaike 

information criterion (AIC) values were run using the principal components and the significant 

site variables to determine the best fitting model that each principal component represented. 

These regressions helped to explore interacting effects of site variables, spotted knapweed 

density, and functional groups. 

RESULTS 

Plant community characteristics 
Overall plant biomass, excluding spotted knapweed, was significantly lower (P=0.046) in 

plots with high spotted knapweed density (126.1±20.9 g/m2) compared to no spotted knapweed 

(404.6±85.0 g/m2) (Table 2.1). High spotted knapweed density sites also resulted in the lowest 

plant ground litter cover (P=0.001, 19.6±2.1 %) and the highest amount of bare ground 

(P=0.099, 23.0±1.8 %). Sites without spotted knapweed also had the lowest daily ground 

temperature throughout the summer (P=0.003, 2.9 oC colder). 
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Sites with high spotted knapweed density had the highest invasive plant cover (P<0.001, 

41.4±3.0 %) and lowest native plant cover (P<0.001, 48.0±6.2 %). Sites with no spotted 

knapweed had the highest native plant cover (94±6.0 %) and lowest invasive plant cover 

(1.5±0.5 %). A complete list of native and invasive plants identified is in Appendix A.  Plant 

community diversity, measured using two diversity indices, was higher in sites with low 

densities of spotted knapweed compared to sites with no spotted knapweed present (P=0.061 and 

0.089), while plant diversity at sites with medium and high densities of spotted knapweed did not 

differ between each other or between low and no densities of spotted knapweed.  

1Table 2.1. Results of one-way analyses of variance examining the relationship of spotted knapweed 
density on site variables, ±SE, n=20, df=3. 

 Knapweed Density   F P 

Site Variables None Low Medium High   

Plant Biomass (g/m2) 404.6±85.0a 212.4±67.8bc 168.6±25.3bc 126.1±20.9c 3.37 0.046* 

Ground Litter Cover (%) 64.7±9.8ab 35.4±8.1bc 46.1±3.0abc 19.6±2.1d 8.20 0.001* 

Bare Ground Cover (%) 6.4±3.2b 15.9±7.6ab 16.8±4.6ab 23.0±1.8a 2.05 0.099 

Daily Ground Temperature (oC) 18.8±0.6b 23.6±1.2a 21.7±0.8ab 22.2±0.8a 5.15 0.003* 

Native Plant Cover (%) 94±6.0a 53.1±8.7b 68.9±6.8b 48.0±6.2b 11.9 <0.001* 

Invasive Plant Cover (%) 1.5±0.5c 20.3±6.4b 24.2±1.6b 41.4±3.0a 20.1 <0.001* 

Shannon-Wiener Diversity 3.9±0.5b 5.2±0.2a 4.8±0.2ab 4.4±0.2ab 3.01 0.061 

Simpson Diversity 5.6±1.5b 9.7±1.3a 8.0±1.0ab 6.0±0.5ab 2.62 0.089 

Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05  

Arthropod functional biomass and diversity 
Arthropod specimens from a total of 80 pitfall traps were counted, sorted, and weighed. 

Appendix B shows sampling frequency of arthropod families that were morphologically 

identified.   

The arthropod samples were collected monthly, thus a repeated measures design. 

However, there were several arthropod community variables that were not correlated with the 

sampling date (Table 2.2): Simpson diversity, herbivore biomass, detritivore biomass, and 

parasite biomass. Theses variables were therefore grouped for analysis. 
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2Table 2.2. Multiple analyses of variance results of the relationship of spotted knapweed density and date 
sampled on arthropod community functional groups, n=80, df=3. 

 Knapweed Density  Date   

Response Variable F P  F P 

Overall Species Richness (n/trap) 1.776 0.164  13.445 <0.001* 

Overall Biomass (mg/trap) 1.788 0.162  3.646 0.033* 

Shannon-Wiener Diversity 1.402 0.249  3.625 0.034* 

Simpson Diversity 1.643 0.192  0.950 0.394 

Herbivore Biomass (mg/trap) 2.849 0.047*  0.266 0.767 

Omnivore Biomass (mg/trap) 2.529 0.068  5.952 0.001* 

Predator Biomass (mg/trap) 1.006 0.389  7.982 0.001* 

Detritivore Biomass (mg/trap) 1.536 0.660  1.281 0.287 

Parasite Biomass (mg/trap) 1.154 0.337  1.072 0.350 

Daily Ground Temperature (oC) 7.450 <0.001  15.854 <0.001* 

Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05 

Herbivore biomass was greater at no spotted knapweed (18.6±8.9 g) compared to sites 

where spotted knapweed was present (Table 2.3). Detritivore biomass was largest in the absence 

of spotted knapweed (3±2.5 g) but only at 10% probability. 

3Table 2.3. Analysis of variance results of the relationship of spotted knapweed density on arthropod 
community biomass and functional group biomass for the entire summer, ±SE, n=80, df=3. 

 Knapweed Density   F P 

Response Variable None Low Medium High   

Overall Summer       

     Overall Biomass  192.7±60.3 181.3±66.6 161.3±56.1 202.7±74.5 1.788 0.162 

     Shannon-Wiener Diversity 1.2±0.2 1.3±0.2 1.7±0.1 1.6±0.1 1.402 0.249 

     Simpson Diversity 1.7±0.2 1.8±0.1 2.2±0.1 2.1±0.1 1.780 0.158 

     Herbivore Biomass  18.6±8.9a 4.0±1.6b 3.8±0.9b 5.2±2.5b 2.857 0.043* 

     ɸOmnivore Biomass 27.3±8.0 23.6±13.5 9.4±3.4 19.0±4.3 1.943 0.131 

     Predator Biomass 85.4±29.7 128.8±56.4 123.9±52.5 104.7±26.4 1.006 0.389 

     Detritivore Biomass  8.8±4.8a 3.9±2.4ab 0.1±0.09b 0.4±0.2b 2.739 0.066 

     Parasite Biomass  3.3±2.5 0.6±0.3 0.1±0.07 0.4±0.2 1.832 0.148 

Biomass is measure in mg per pitfall trap. 
Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05. 
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ɸNote that biomass is not an accurate measurement for omnivores caught in pitfall traps, as most 
omnivores caught (>90%) were ants (Formicidae), which are eusocial animals (Andersson, 1984) 
that follow scent trails into pitfall traps; not giving accurate representations of the population. 
Instead, see Appendix C with species richness data. 

 Functional groups were correlated differently by the density of spotted knapweed at 

different sampling periods throughout the summer (Table 2.4). May and July sampling yielded 

no significant differences of arthropod community composition at different spotted knapweed 

densities. However, May sampling yielded much higher overall insect biomass than the other 

months. 

In June, herbivore biomass was 10-25× higher in the absence of spotted knapweed than at 

sites with spotted knapweed. Omnivore biomass was lowest where no spotted knapweed were 

present and detritivore biomass decreased with increasing spotted knapweed density. August 

sampling had the highest predator biomass at low spotted knapweed densities and the lowest 

predator biomass at no spotted knapweed density.  

4Table 2.4. Analysis of variance results of the relationship of spotted knapweed density on arthropod 
community functional group biomass sampled each month, ±SE, n=20, df=3. 

 Knapweed Density   F P 
Response Variable None Low Medium High   
May       
     Overall Biomass 106.1 525.9 346.1 463.7 1.850 0.179 
     Shannon-Wiener Diversity 1.2 1.8 1.7 1.6 0.481 0.700 
     Simpson Diversity 1.7 2.3 2.2 2.2 0.680 0.577 
     Herbivore Biomass 7.0 6.2 4.2 3.2 0.214 0.885 
     ɸOmnivore Biomass 11.5 23.8 6.8 19.7 1.393 0.281 
     Predator Biomass 86.7 441.6 335.0 440.0 1.532 0.245 
     Detritivore Biomass 0.3 1.9 0.04 0.6 0.394 0.759 
     Parasite Biomass 1.3 1.2 0.01 0.03 0.831 0.496 
June       
     Overall Biomass 324.6 76.6 157.4 240.3 1.546 0.241 
     Shannon-Wiener Diversity 1.8 1.3 2.1 1.8 0.829 0.497 
     Simpson Diversity 2.1 1.8 2.4 2.1 0.484 0.698 
     Herbivore Biomass 38.6a 1.5b 3.8b 2.6b 3.513 0.039* 
     ɸOmnivore Biomass 8.3a 48.4b 12.8ab 31.4ab 2.721 0.079 
     Predator Biomass 163.2 54.6 140.1 204.7 1.294 0.311 
     Detritivore Biomass 61.1a 12.1b 0.4b 0.01b 4.008 0.026* 
     Parasite Biomass 10.2 0.0 0.3 1.4 1.070 0.390 
     Daily Ground Temperature 16.5 20.5 18.9 18.9 2.277 0.119 
July       
     Overall Biomass 81.2 101.3 136.0 82.2 0.714 0.558 
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     Shannon-Wiener Diversity 1.1 1.1 1.6 1.9 1.036 0.403 
     Simpson Diversity 1.8 1.6 2.1 2.3 0.572 0.642 
     Herbivore Biomass 4.1 3.6 2.9 0.8 0.823 0.500 
     ɸOmnivore Biomass 33.8 9.6 16.9 21.8 1.207 0.339 
     Predator Biomass 30.7 4.7 20.0 32.9 2.220 0.125 
     Detritivore Biomass 2.0 0.1 3.7 0.1 0.400 0.755 
     Parasite Biomass 0.8 1.1 0.2 0.2 0.397 0.757 
     Daily Ground Temperature 20.2a 25.9b 23.9ab 24.4ab 2.644 0.085 
August       
     Overall Biomass 6.3b 21.6a 5.4b 24.7a 2.732 0.055 
     Shannon-Wiener Diversity 0.7 1.1 1.4 1.0 0.448 0.772 
     Simpson Diversity 1.4 1.5 2.1 1.9 1.018 0.441 
     Herbivore Biomass 8.9 4.1 3.9 5.2 0.760 0.533 
     ɸOmnivore Biomass 16.6 2.3 0.9 2.9 1.634 0.221 
     Predator Biomass 0.9b 31.5a 0.6b 7.1ab 2.235 0.087 
     Detritivore Biomass 3.9 1.0 0 0.6 0.424 0.739 
     Parasite Biomass 0.8 0 0 0 1.000 0.418 
     Daily Ground Temperature 19.6a 24.3b 22.3ab 23.3ab 2.703 0.082 

Biomass is measure in mg per pitfall trap.  
Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05.  
ɸSee appendix C for omnivore and other species richness data. 

Arthropod community trophic interactions 
A PCA using the overall summer biomass of all five functional groups’ showed 

components 1 and 2 accounted for about 60% of the variation in functional group biomass 

among differing spotted knapweed density sites (Figure 2.4; Table 2.5). Components 2 and 3 

accounted for about 42% of the variation. Component 1, controlled by spotted knapweed 

biomass (Table 2.6), negatively predicts herbivore and parasite biomass (r = -0.666 & -0.683, 

Table 2.6). Component 2, controlled by litter cover and ground temperature (Table 2.7), 

negatively predicts omnivore and predator biomass (r = -0.676 & -0.685, Table 2.5). Finally, 

component 3, controlled by plant biomass and litter cover (Table 2.8), negatively predicts 

detritivore biomass (r = -0.929, Table 2.5). The vectors reveal a negative relationship between 

herbivores/parasites versus predators/omnivores at all sites (Figure 2.4). See Appendix D-F for 

monthly scale PCA results. 
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5Table 2.5. Factor loadings of the overall summer principal components analysis, n=80. 

 Component 1 Component 2 Component 3 
Herbivore -0.666 0.108     0.233 
Omnivore -0.163 -0.676         - 
Predator -0.127 -0.675     -0.255 
Detritivore -0.217 0.254     -0.929 
Parasite -0.683 0.101     0.124 
Standard Deviation 1.357 1.078     0.976 
Variance (%) 36.8 23.3     19.0 
Cumulative Variance (%) 36.8 60.1     79.1 
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6Table 2.6. Three multiple regression analyses for significant site variables predicting principal component 1, 2, and 3, n=80, df=56. 

Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05. 

 

 Component 1 
F-stat=2.39, P=0.078, R2=0.130 

Component 2 
F-stat=7.56, P=0.001, R2=0.222 

Component 3 
F-stat=2.59, P=0.062, R2=0.132 

Variable Estimate SE T P Estimate SE T P Estimate SE T P 
Intercept 
 

-1.872 1.172 -1.597 0.116 -3.668 1.005 -3.648 0.001* -2.550 2.136 -1.194 0.238 

Spotted Knapweed 
Biomass (g/m2) 
 

0.201 1.109 2.400 0.019*         

Plant Biomass (g/m2) 
 

        0.890 0.386 2.300 0.025* 

Litter Cover (%) 
 

    1.868 0.573 3.257 0.002* -1.800 0.988 -1.823 0.074 

Bare Ground Cover (%) 
 

-1.729 1.373 -1.259 0.213         

Daily Ground 
Temperature (oC) 

0.076 0.030 1.259 0.213 0.118 0.034 3.411 0.001* -0.039 0.043 -0.912 0.366 
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6Figure 2.4. Overall principal components analyses for the entire summer examining the influence of each 
functional group on overall arthropod community composition graphed using (a) components 1 and 2, 
and (b) components 2 and 3, n=80. 
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DISCUSSION 

  This study explored the effects of differing densities of the highly invasive plant spotted 

knapweed on grassland arthropod communities in the semi-arid grasslands of Southern Central 

British Columbia. As predicted, spotted knapweed presence had differing correlations on the 

biomass of different arthropod functional groups. These correlations may have been the absence 

of foraging or reproduction opportunities (Bernays and Graham 1988), or through changes in 

native plant community through competition (Callaway and Ridenour 2004; Hansen and Ortega 

2009), and changes in abiotic ecosystem factors such as amount of bare ground or litter cover 

and soil temperatures (Fraser and Carlyle 2011). 

Plant community characteristics 
Contrary to previous findings (Fraser and Carlyle 2011), spotted knapweed density did 

not correlate with plant community diversity, but higher spotted knapweed densities negatively 

correlated with overall biomass of the plant community. Spotted knapweed is thought to secrete 

allelochemicals through its roots into surrounding soils that can shift microbial community 

structure and function, increase soil phosphorus and potassium availability (Thorpe et al. 2006), 

and reduce soil nitrogen availability (Suding et al. 2004; Fraser and Carlyle 2011). This change 

in soil chemistry within dense spotted knapweed stands makes the environment less hospitable 

for all plants, reducing plant biomass. This was further confirmed by the observation of bare 

ground cover being highest and plant litter cover being lowest at high spotted knapweed 

densities. As found by Fraser and Carlyle (2011), the increase in bare ground likely lead to 

increased soil temperatures in the highest density spotted knapweed stands when compared to 

sites with no knapweed. It is important to note that this is inference based on past studies 

exploring spotted knapweed altering soil characteristics (Suding et al. 2004; Thorpe et al. 2006; 

Fraser and Carlyle 2011).  Whether site characteristics determine spotted knapweed distribution 

or spotted knapweed influences site characteristics cannot be determined through our data at 

these sites. Regardless, spotted knapweed presence can result in functional changes to the habitat 

for arthropods. 
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Overall arthropod functional biomass and diversity 
Arthropod functional diversity was not correlated with spotted knapweed density. Past 

studies have shown both increases (e.g. Kappes et al. 2007; Alerding and Hunter 2013) and 

decreases (e.g. Burghardt et al. 2010; Bultman and DeWitt 2008; Ernst and Cappuccino 2005) in 

arthropod community diversity with the introduction of invasive plants. It is possible that any 

negative effects of spotted knapweed on specific arthropod functional groups were counteracted 

by positive effects to other functional groups. This can be seen in Table 2.3, where no obvious 

trend exists in overall arthropod biomass with differing spotted knapweed densities. 

As predicted, the biomass of specific arthropod functional groups was uniquely 

negatively and positively correlated with differing densities of spotted knapweed in the grassland 

ecosystems. This suggests that indirect changes to arthropod habitat through the introduction of 

spotted knapweed was the driving force in the changes observed to functional group biomass. 

Any changes to arthropod functional groups can lead to changes in community dynamics that 

could have cascading effects throughout the ecosystem. 

There were also differences to arthropod community measures – except herbivore, 

detritivore, and parasite biomass – on a temporal scale throughout the summer.  

Herbivores 
Herbivores are generally unable to use a plant as a food source when they do not share an 

evolutionary history with that plant (Tallamy 2004). Bernays and Graham (1988) found that 90% 

of all arthropod herbivores feed on plants in only a single family or a few genera. In a review 

paper by Litt et al. (2014), 42 out of 87 studies found that herbivorous arthropod abundance, 

species richness, or biomass decreased due to the presence of invasive plant species, with the rest 

of the studies showing no differences or increases. Our study showed the same negative 

association between herbivore biomass and spotted knapweed biomass. 

Herbivores are one of only two functional groups observed throughout the course of the 

summer to have higher biomass with no knapweed than with any knapweed. Many species in the 

orders Thysanoptera (thrips), Hemiptera (true bugs), and Coleoptera (beetles) were found in our 

samples and can be adversely affected by novel plants because they are considered host specific 

during some or all life stages (Triplehorn and Johnson, 2005). Therefore, herbivores could have 

lower biomass in spotted knapweed sites due to bottom up control of limited native plant 
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biomass for consumption. These indirect effects could have influenced another frequently 

sampled herbivorous order, Orthoptera (grasshoppers), which has been observed to decrease in 

areas dominated by invasive plants (Litt and Steidl 2010; Yoshioka and Kadoya 2010).  

Decreases in herbivorous arthropods can adversely affect higher trophic levels, especially 

grassland birds, which feed on large herbivores such as Lepidoptera (butterflies and moths) and 

Orthoptera (Wiens and Rotenberry 1979). Decreased herbivore biomass could also have been 

influenced by predaceous arthropod functional groups through top-down control. When predator 

biomass was high, herbivore biomass was low. The ratio of predator:herbivore biomass bell 

curved with spotted knapweed density (none=4.59; low=32.2; medium=32.6; high=20.1, 

suggesting that the habitat created by spotted knapweed could have facilitated better hunting 

conditions for predators or adverse refuge for herbivores at intermediate densities. 

Omnivores 
The omnivore biomass did not show obvious trends based on spotted knapweed density, 

and also differed greatly between months. Omnivores are a difficult group to predict and analyze 

because they play many ecosystem roles and have varying diets and environmental needs 

(Triplehorn and Johnson 2005; Trigos-peral et al. 2018). This could make the group more 

adaptable to the introduction of invasive species and subsequent changing of the habitat 

(Wolkovich et al. 2009). 

Over 90% of the omnivore samples collected were from the family Formicidae (ants), 

which are eusocial animals. Eusocial animals follow scent trails (Andersson 1984), which could 

give inaccurate results of functional group biomass with numerous individuals following one 

another into the trap. It is still important to understand the effects of changing ecosystems on 

Formicidae because they are such a diverse functional group that are easy to identify and play 

important environmental roles as seed dispersers, and prey items (Schmidt et al. 2012). 

Predators 
Past studies have shown predators being adversely correlated with invasive plants 

indirectly through changes in prey items (Bultman and DeWitt 2008; Gratton and Denno 2005). 

However, the predator biomass in this study followed a non-significant unimodal distribution of 

more biomass at intermediate spotted knapweed densities and lowest biomass at pristine sites 

and at highly dense sites. Site characteristics including higher ground temperatures, less litter 
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cover, and more bare ground at intermediate spotted knapweed densities could all contribute to 

improved mobility and preferred hunting habitat for predaceous Lycosidae (wolf spiders) and 

Carabidae (ground beetles) that were frequently found in traps. Carabidae have been observed to 

hunt more actively and effectively in warmer temperatures (Frank and Bramböck 2016) and 

several Araneae (spiders) and other predators have had increased hunting mobility and web-

creating availability in the presence of invasive plants (Pearson et al. 2009). These site 

characteristics persist at high spotted knapweed densities; however, the lack of other functional 

group biomass at these sites drastically reduces prey availability and could counteract the abiotic 

hunting advantages for predators. 

Most studies exploring changes in predaceous arthropod biomass associated with 

invasive plants are observation-based studies, not controlled experiments that lead to cause and 

effect relationships (Litt et al. 2014). Observation-based interpretations, such as this study, are 

complicated and usually require more information about ecosystem food webs, prey capture 

techniques, and other habitat needs for predators. 

Parasites 
Parasite biomass did not differ with spotted knapweed density. These non-significant 

results might be due to the large standard error associated with the samples. When looking at 

general trends in the data, one can see that there were more parasites in pristine sites than any 

other. Parasite host animals such as birds (Hickman et al. 2006), small mammals (Bateman and 

Ostoja 2012), and larger arthropods (Bultman and DeWitt 2008) have been shown to prefer 

pristine grassland areas compared with areas invaded by novel plants. However, the data 

collected from this study does not portray this.  

Detritivores 
Detritivore biomass was near zero in medium and high spotted knapweed densities and 

was lower than pristine site biomass (P<0.1). This finding was surprising as other studies 

reviewed by Litt et al. (2014) found that detritivores are most likely to benefit from a plant 

invasion, as was observed in 58 out of 87 studies reviewed, and no studies documenting 

decreases. Detritivores are likely to benefit from the introduction of invasive plants because 

invasive plants are generally more productive, which increases ground litter and decaying 

vegetation (Siemann et al. 2006; Bartomeus et al. 2008). This should provide more food and 
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preferred habitat conditions for detritivores (Longcore 2003) such as Collembola (springtails) 

and Microcoryphia (jumping bristletails), which were frequently sampled. An explanation for 

our unexpected results is the peculiar site characteristics associated with spotted knapweed 

invaded sites in this study. High density spotted knapweed sites had significantly less litter cover 

and higher bare ground cover, as was also observed in this region by Fraser and Carlyle (2011). 

This is the opposite of what is expected at high density invasive plant patches (Alerding and 

Hunter 2013). The high density spotted knapweed sites in our study may have been affected by 

high winds in the upper grasslands of LDB, where the dominant grass species is rough fescue 

(Festuca scabrella). Rough fescue is a densely tufted perennial grass, which grows in large 

clumps and has persistent old sheaths and leaf bases that form large dead vegetation litter mats 

(Parish et al. 1996). These dense mats are ideal microclimates for detritivorous arthropods 

(Alerding and Hunter 2013).  

Spotted knapweed outcompeting rough fescue in this specific habitat may lead to 

decreased litter cover and adverse habitat conditions for detritivorous arthropods in this specific 

study site. Duplicating this observational study at other semi-arid grassland locations in Western 

North America will give us a better understanding of the effects of spotted knapweed on 

detritivores. 

Arthropod community trophic interactions 
PCA suggests that there are numerous site characteristics and interacting trophic 

relationships that contribute to differing biomass of arthropod functional groups in this grassland 

ecosystem. All three components used in the PCA are associated with different site 

characteristics that have differing influences on functional groups. The result that more spotted 

knapweed density correlated with less herbivore and parasite biomass was likely due to the 

interacting effects of spotted knapweed outcompeting native plants, providing less food sources, 

and acting as a bottom-up control for herbivores (Triplehorn and Johnson 2005; Litt and Steidl 

2010), as well as less host organisms for parasites using invaded sites (Bultman and DeWitt 

2008; Bateman and Ostoja 2012). Herbivores and parasites were almost exclusively grouped into 

the pristine no-knapweed sites. More litter cover could lead to more difficult hunting for 

predators (Frank and Bramböck 2016), explaining the negative relationship with predator 

biomass.  



30 
 

The negative relationship between herbivores/parasites and predators/omnivores at all 

sites suggests top-down control, with more predators leading to fewer herbivores, at sites with 

more spotted knapweed and less litter cover (Hairston et al. 1960). The introduction of spotted 

knapweed seems to facilitate ideal hunting habitat with less litter cover for predators to control 

the density of herbivores (Frank and Bramböck 2016). Additionally, higher parasite abundance at 

sites without spotted knapweed can act as a top down control for host predator and omnivore 

species (Bultman and DeWitt 2008; Gratton and Denno 2005). 

Conclusion 
 The results from this study suggest that the density of spotted knapweed patches in semi-

arid grasslands have varying effects on arthropod functional groups. High density of spotted 

knapweed was correlated with decreases in plant biomass, possibly working as a bottom-up 

control of less forage decreasing herbivorous arthropod biomass. This had no significant 

correlation on omnivore or parasite biomass. The presumed allelopathic chemicals released into 

the soil from spotted knapweed may have suppressed germination of native plants, which may 

have resulted in more bare ground, higher ground temperatures, and less litter cover in sites with 

spotted knapweed, thus providing a better hunting habitat for predator biomass at intermediate 

spotted knapweed densities. A top-down control on herbivores was presumably facilitated, 

judging by an increasing predator:herbivore ratio observed with increasing spotted knapweed 

density. Detritivore biomass was highest at pristine, no-knapweed grassland sites and 

significantly lower at spotted knapweed invaded sites, which may have been due to the lack of 

food availability with limited ground litter cover. Any changes to arthropod functional groups 

due to the introduction of invasive species would lead to changes in overall community dynamics 

felt throughout the ecosystem. 

 Although this study resulted in several interesting findings, functional guilds are not a 

comprehensive method of grouping arthropods. The complexity of differing ecosystem services 

that different members of a specific functional guild performs (Higgins and Lindgren 2006; 

Bourn and Thomas 2002; Tscharntke and Greiler 1995) makes it hard to definitively make 

conclusions about ecological implications when simplifying arthropods into groups. Identifying 

specimens using genomic techniques that can accurately identify genera, such as DNA 

metabarcoding (Ji et al. 2013), could help gain a better understanding of specific arthropod 

community changes. 
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 Future studies could include manipulation trials to assess arthropod community rebounds 

with the removal of spotted knapweed in an area to better understand the legacy effects of 

spotted knapweed after site restoration. It would also be interesting to explore the mechanisms 

behind the biomass of specific arthropod functional groups (i.e. palatability trials, reproduction 

locations, hunting site characteristics, etc.). 

Human activities such as mining, recreation, and farming are altering British Columbia 

grassland ecosystems; leaving them increasingly susceptible to anthropogenic-caused changes, 

such as the colonization of invasive plants.  These grasslands provide invaluable services to 

people and the environment. The results from this study contribute to our growing understanding 

of invasive plants in British Columbia grasslands. This information will inform conservation 

management strategies important in combatting the spread of invasive plants and the subsequent 

shifts in ecological productivity and biodiversity 
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CHAPTER 3: DNA BARCODING AS AN EXPEDITED METHOD OF ARTHROPOD 

IDENTIFICATION 

INTRODUCTION 

Invasive plant species have broad ecological and economic impacts and are one of the 

main global threats to biodiversity (Vitousek et al. 1996). When invasive plants are introduced 

into an area they are often able to establish at high rates and densities compared to native plants 

in direct competition. This is because many invasive plant species lack predators in their new 

environments and grow unrestrained by predation (Siemann et al. 2006). This typically leads to 

increased dominance of invasive plants and decreased biomass and diversity of native plants 

(Benesperi et al. 2012; Vilà et al. 2011), all of which can disrupt energy dynamics at higher 

trophic levels throughout the ecosystem (Schirmel et al. 2016; Tallamy et al. 2010).  

Arthropods represent the group with the largest animal biomass and make up the majority 

of animal species in terrestrial habitats (Havstad 2008). They contribute to ecosystem function in 

their various and diverse roles as pollinators, foragers, soil engineers, and food for other 

organisms (e.g. Higgins and Lindgren 2006; Bourn and Thomas 2002; Tscharntke and Greiler 

1995). Therefore, a deeper knowledge of the impact of invasive plants on arthropods is important 

in understanding changes to ecosystem energy flows higher in the food chain. 

Spotted knapweed is a deeply tap-rooted perennial forb native to Eastern Europe that was 

first introduced into North America in the 1890s (Fraser and Carlyle 2011). It is considered one 

of the most ecologically harmful invasive plant species in Western North America (Hansen and 

Ortega 2009). It is an extremely competitive plant through copious production of seeds that can 

remain viable for over eight years (Davis et al. 1993). Spotted knapweed can alter soil properties 

by increasing phosphorous within its rhizosphere, thus benefitting spotted knapweed persistence 

and growth, and decreasing soil carbon and nitrogen pools (Fraser and Carlyle 2011). Spotted 

knapweed is suspected to exude an allelochemical through its roots, making the soil inhospitable 

to native plant species (Callaway and Ridenour 2004). Once established, spotted knapweed 

primarily colonizes grassland communities by forming dense, near-monoculture stands (Hansen 

and Ortega 2009). Spotted knapweed has adverse economic impacts as it causes greater surface 

water runoff, increases sediment loading (Lacey et al. 1989), and because the plant is generally 

unpalatable for wild and domestic grazing ungulates. 
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The province of British Columbia released its first biological control agents against 

spotted knapweed in 1970. Insect agents were chosen based on their ability to self-perpetuate, 

self-distribute, and create a long-term balance between insect feeding on knapweed (Gayton and 

Miller 2012; Powell et al. 1994). Numerous agents were released in the Lac du Bois Grasslands 

Protected Area, including Larinus obtusus (knapweed flower weevil), which is now an 

established, self-perpetuating population (Gayton and Miller 2012). 

Although there are studies on the effects of plant invaders on arthropods (e.g. Alerding 

and Hunter 2013; Litt and Steidl 2010; Pearson et al. 2009), our knowledge is incomplete, given 

the megadiversity of arthropods and their ecological traits (Kadlec et al. 2018). New strategies of 

expedited arthropod identification could improve our sampling efficiencies and ability to 

understand arthropod community dynamics. 

Traditional methods of biodiversity assessment for cryptic and diverse organisms such as 

arthropods is expensive and time consuming (Ji et al. 2013; Yu et al. 2010).  Morphological 

identification can usually only be conducted by experienced taxonomists. If a specimen is 

damaged or if the specimen is a juvenile, specialists may be unable to accurately identify to the 

species level (Gibson et al. 2015). DNA metabarcoding is a semi-automated, higher throughput 

method that only requires specimen tissue samples to obtain genetic barcodes for identification 

(e.g. Marizzi et al. 2018).  DNA metabarcoding combines two technologies: DNA taxonomy, 

and high-throughput sequencing (HTS) (Ji et al. 2013) as a tool to rapidly assess biodiversity in 

bulk, mixed samples (Chuo Beng et al. 2016; Valentini et al. 2016). HTS technology allows for 

the simultaneous analysis of large numbers of specimens in multiplex polymerase chain reactions 

(PCR) rather than a single specimen per PCR, as is done with Sanger sequencing (Sanger et al. 

1977). 

DNA metabarcoding has been successfully used to assign taxonomies to specimens of 

animals (e.g. Naseem and Tahir 2016), plants (e.g. Kress et al. 2005), fungi (e.g. Schoch et al. 

2012), and other microbes (e.g. Patel et al. 2008). When properly deployed, this approach can 

reliably and cost-effectively provide relative abundance of species assemblages along 

environmental gradients (Chuo Beng et al. 2016), which is important in the application of 

conservation management and environmental assessments. 
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According to Herbert et al. (2003ab), the 658-base pair (bp) mitochondrial cytochrome c 

oxidase subunit 1 (COI) gene can serve as ‘the core of a global bio-identification system for 

animals’. The COI gene is preferentially used to differentiate animals as it is present in all 

eukaryotes, and it is easy to amplify and sequence due to its short length and the robust 

capabilities of universal PCR primers (Naseem and Tahir 2016; Folmer et al. 1994). COI also 

appears to possess sufficient variation in nucleotide sequences to discriminate closely allied 

species (Herbert et al. 2003ab). 

The main objective of this study was to assess the effects of spotted knapweed patch 

density on epigeal arthropod community assemblages. In particular: (i) Does the ordination of 

overall arthropod communities vary with spotted knapweed density at a temporal scale? (ii) Are 

there particular arthropod orders that are differentially impacted by spotted knapweed density? 

(iii) Is arthropod diversity affected by spotted knapweed density? (iv) And is DNA 

metabarcoding an appropriate method for expedited arthropod sampling compared to 

morphological identification?  

METHODS 

 Arthropod samples were collected in the Lac du Bois Grasslands Protected Area in the 

summer of 2017 (refer to Chapter 2). Samples not identified in Chapter 2 were kept at -20֯C in 

87% denatured ethanol prior to DNA extraction. Four sample sites (one sample from each 

spotted knapweed density) were sent to the Canadian Centre for DNA Barcoding (http://ccdb.ca) 

to be identified, sequenced, and catalogued into the database (http://www.barcodeoflife.org 

under project code “LFBC”) This was to ensure that all specimens sampled in this region 

(additionally, Garris et al. 2016, project code “NGNNA”) were available for building custom 

DNA barcoding databases for the local region. 

DNA extraction 
Arthropod specimens were extracted from specimen bottles using sterile forceps and left 

to air dry prior to DNA extraction. In order to keep the extracted DNA quantity similar across 

individual arthropods, the heads from individuals with body length equal to or greater than 5 

mm, and the entire bodies of everything smaller, were used (modified from Chuo Beng et al. 

2016). Tissue samples from each site were homogenized in liquid nitrogen using a pre-cooled 

and sterilized mortar and pestle; genomic DNA was extracted from ground samples using an 

http://ccdb.ca/
http://www.barcodeoflife.org/
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E.Z.N.A. Insect DNA Kit (Omega Bio-Tek, Norcross, Georgia, USA) according to the 

manufacturer’s protocol. DNA concentrations were measured using a Qubit 2.0 Fluorometer and 

a Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA).  

PCR conditions 
A 402 bp region of the COI mitochondrial gene was amplified via PCR in a Simpli Amp 

Thermal Cycler (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts, USA) 

using degenerate primers (Table 3.1). Amplifications were carried out in 25 μL with 10 ng 

genomic DNA, 12.5 μL 2X GoTaq DNA polymerase (Promega Corporation, Madison, 

Wisconsin, USA), 1 μL each of 10 μM forward and reverse primers, and nuclease-free water. 

PCR cycling conditions were 94 °C for 1 min, 7 cycles of 94 °C for 30 s; 43 °C for 30 s; 72 °C 

for 40 s; then 30 cycles of 94 °C for 30 s; 55 °C for 30 s; 72 °C for 40 s and finally 72 °C for 5 

min (modified from Chuo Beng et al., 2016). Reaction mixtures were then cleaned of DNA <100 

bp using an E.Z.N.A. Cycle Pure Kit (Omega Bio-Tek, Norcross, Georgia, USA) according to 

the manufacturer’s instructions; amplicon size was estimated on a 1.5% agarose gel and 

amplicons were quantified using a Qubit 2.0 Fluorometer. 

7Table 3.1. PCR primers used in this study. 

Primer Name Primer Sequence (5’-3’) Primer Source 

MHemF (Forward) GCATTYCCACGAATAAATAAYATAAG Park et al., 2011 

dgHCO-2198 (Reverse) TAAACTTCAGGGTGACCAAARAAYCA Meyer, 2003 

Using the amplicons from the first round of PCR as a template, a second round of PCR 

with barcoded primers was completed using the same conditions as before. Second round PCR 

primers included barcode and sequencing adaptor sequences; for example, forward primers 

included the A adaptor sequence (underlined) and a unique IonXpress barcode with three base 

adaptor (bold); reverse primers included the P1 adaptor sequence (underlined and bold): 

CCATCTCATCCCTGCGTGTCTCCGACTCAGCTAAGGTAACGATGCATTYCCACGAA

TAAATAAYATAAG, 

CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTAAACTTCAGGGT

GACCAAARAAYCA. 
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Sequencing 

Purified adapter and barcode-ligated samples were pooled to equimolar amounts, and 

quantitative real-time PCR was carried out on an Eco Real-Time PCR System (Illumina Inc., San 

Diego, California, USA) with an Ion Library TaqMan Quantitation Kit to determine the library 

concentration for sequencing. Sequencing libraries were templated to Ion Sphere particles, 

purified and loaded onto Ion 530 chips using an Ion Torrent Ion Chef Instrument. Sequencing 

was carried out on an Ion S5 XL sequencer (Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). 

Data processing 
Sequencing data was processed in Torrent Suite 5.10.0 with Pre-BaseCaller and 

BaseCaller Args set to -disable-all-filters. The resulting multiplexed BAM file was exported and 

passed to AMPtk v. 1.0.3 (Palmer et al., 2018) for demultiplexing with the amptk ion script using 

default parameters (minimum read length 100 bases, trim all reads to 300 bases, no barcode 

mismatches, 2 base primer mismatch allowed).  Demultiplexed data files were concatenated and 

then clustered with amptk cluster with an OTU clustering ratio of 97% and filtered with amptk 

filter.  

A database of over 8 million specimens with publicly available taxonomy barcodes was 

downloaded on September 13th, 2018 from the Barcode of Life Data System 

(http://v4.boldsystems.org). The database was reformatted using the bold2utax.py script in 

AMPtk, globally aligned with amptk database, subsampled to 90,000 records with 

bold2amptk.py, and converted into a database for local use in amptk database as per the 

instructions on https://amptk.readthedocs.io/en/latest/taxonomy.html. Once the database was 

prepared, taxonomy was assigned to OTUs using the amptk taxonomy script. 

OTUs with fewer than 2000 reads were removed, the data were rarified to the lowest 

number of reads; the resulting data matrix for analysis included 3,440,055 reads in 265 OTUs, 

with 173 OTUs assigned to genera and 136 OTUs assigned to species (Appendix G). 

 

 

http://v4.boldsystems.org/
https://amptk.readthedocs.io/en/latest/taxonomy.html
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Statistical analysis 
All data were analyzed statistically in RStudio integrated under R 3.4.4 “Someone to 

Lean On” (The R Foundation for Statistical Computing). When necessary, data were natural 

logarithm or arcsine transformed. All data analyses were tested for a significance at the 5% 

probability level and noted within the 10% probability level to recognize possible trends in the 

data. 

 A non-parametric multidimensional scaling analysis (nMDS) was conducted to visualize 

the arthropod community data. Clear compositional changes were observed over time, so each 

month of arthropod sampling was analyzed separately to address the differences in changing 

arthropod communities throughout the summer. Arthropod OTUs were grouped into orders and 

into functional groups as per the previous chapter to better visualize community structures. 

Shannon-Wiener alpha diversity was calculated for the overall arthropod communities and orders 

at each month using the vegan package in R.  

Arthropod order and functional group species richness were input into regression analysis 

models with spotted knapweed density as the predictor variable to determine which arthropod 

groups were most affected. A regression was conducted with Larinus obtusus reads as the 

predictor variable to explore correlations with a knapweed biological control agent and 

knapweed presence. Additionally, one-way analyses of variance (ANOVAs) and post hoc Tukey 

tests were done to test the effects of the density of spotted knapweed broken into categorical data 

(no, low, medium, and high density) on the density and species richness of each arthropod 

functional guild. The arthropod guilds included herbivore, omnivore, predator, detritivore, and 

parasite. 
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RESULTS 

The arthropod communities showed a clear structure, grouping by month in the 

ordination plot (Figure 3.1). Further data analyses were grouped by month due to this temporal 

separation. See appendix H for nMDS ordination plots for each month of sampling. 

 

7Figure 3.1. Ordination (nMDS) plot illustrating the similarities and differences in insect OTU 
composition across four spotted knapweed density categories (high, medium, low, and no) and across 
each month of sampling (May, June, July, and August), n=56. 

Biological control agent 
Larinus obtusus density was positively correlated with spotted knapweed density in the 

month of July (Table 3.2; Figure 3.2). Other months did not show significant trends. 
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8Table 3.2. Linear regression results of Larinus obtusus (knapweed flower weevil) density and spotted 
knapweed density, n=56. 

L. obtusus F P df 

May n/a n/a n/a 

June 0.074 0.790 15 

July 5.033 0.049* 12 

August 0.091 0.768 14 

Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05 

 
8Figure 3.2. Linear regression of Larinus obtusus density vs spotted knapweed percent cover sampled in 
the month of July, n=56. 

Spotted knapweed effects on arthropod orders 
There were few significant correlations of spotted knapweed density on species richness 

by arthropod order (Table 3.3). Total species richness, and the species richness of Diptera and 

Coleoptera were negatively correlated depending on month (Figure 3.3). Orthoptera and Araneae 

were positively correlated, but also depending on month (Figure 3.3). 
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9Table 3.3. Regression analyses results of the effect of spotted knapweed density on arthropod order 
species richness, n=56, df=49. 

Knapweed Density F P df 

Whole Summer    

Total Richness <0.001 0.993 55 

Orthoptera 4.367 0.042* 55 

Hemiptera 0.095 0.759 55 

Araneae 2.739 0.100 55 

Diptera 0.996 0.322 55 

Coleoptera 0.618 0.435 55 

Hymenoptera 0.537 0.467 55 

Archaeognatha 0.984 0.326 55 

May    

Total Richness 3.206 0.098 14 

Orthoptera <0.0001 0.999 14 

Hemiptera 0.513 0.488 14 

Araneae 1.167 0.301 14 

Diptera 5.141 0.043* 14 

Coleoptera 5.945 0.031* 14 

Hymenoptera 0.044 0.837 14 

Archaeognatha 2.246 0.160 14 

June    

Total Richness 0.085 0.774 15 

Orthoptera 10.41 0.006* 15 

Hemiptera 0.171 0.685 15 

Araneae 0.554 0.469 15 

Diptera 1.776 0.204 15 

Coleoptera 0.183 0.676 15 

Hymenoptera 1.377 0.260 15 

Archaeognatha 0.065 0.803 15 

July    

Total Richness 0.763 0.403 12 

Orthoptera 0.477 0.505 12 

Hemiptera 0.742 0.409 12 
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Diptera 0.488 0.500 12 

Coleoptera 0.072 0.794 12 

Hymenoptera 0.725 0.414 12 

Archaeognatha 0.062 0.512 12 

August    

Total Richness 0.181 0.677 14 

Orthoptera 0.258 0.620 14 

Hemiptera 0.637 0.439 14 

Araneae 2.670 0.126 14 

Diptera 0.128 0.726 14 

Coleoptera 0.035 0.854 14 

Hymenoptera 0.079 0.783 14 

Archaeognatha 0.153 0.702 14 

Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05 
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9Figure 3.3. Effect of spotted knapweed density on arthropod order species richness during a) the overall 
summer, b) May, c) June, n=56, df=49. 

 Orthoptera diversity was consistently positively correlated to increasing spotted 

knapweed density (Table 3.4). This was most noticeable in the overall summer, June, and August 

sampling. Diptera diversity was negatively correlated to spotted knapweed in July, and 

Coleoptera diversity was positively correlated in August (Figure 3.4). 

10Table 3.4. Regression analyses results of the effect of spotted knapweed density on arthropod order 
Shannon-Wiener diversity, n=56, df=49. 

Knapweed Density F P df 

Whole Summer    

All arthropod diversity 0.006 0.936 55 

Coleoptera diversity 0.202 0.655 55 

Diptera diversity 1.122 0.294 55 
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Hemiptera diversity 0.209 0.649 55 

Hymenoptera diversity 1.94 0.169 55 

Orthoptera diversity 6.566 0.013* 55 

May    

All arthropod diversity 0.216 0.650 14 

Araneae diversity 1.273 0.281 14 

Coleoptera diversity 0.031 0.863 14 

Diptera diversity 0.220 0.648 14 

Hemiptera diversity 0.696 0.420 14 

Hymenoptera diversity 0.002 0.962 14 

Orthoptera diversity 0.278 0.607 14 

June    

All arthropod diversity 0.856 0.370 15 

Araneae diversity 0.140 0.713 15 

Archaeognatha diversity 3.546 0.081 15 

Coleoptera diversity 0.23 0.639 15 

Diptera diversity 0.079 0.783 15 

Hemiptera diversity 0.005 0.943 15 

Hymenoptera diversity 0.236 0.635 15 

Orthoptera diversity 6.707 0.021* 15 

July    

All arthropod diversity 1.544 0.242 12 

Archaeognatha diversity 1.933 0.195 12 

Coleoptera diversity 0.060 0.811 12 

Diptera diversity 4.387 0.063 12 

Hemiptera diversity 0.421 0.531 12 

Hymenoptera diversity 1.171 0.304 12 

Orthoptera diversity 0.049 0.830 12 

August    

All arthropod diversity 0.360 0.560 14 

Araneae diversity 0.364 0.557 14 

Archaeognatha diversity 1.37 0.263 14 

Coleoptera diversity 3.636 0.079 14 

Diptera diversity 0.0001 0.990 14 
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Hemiptera diversity 1.458 0.249 14 

Hymenoptera diversity 0.571 0.463 14 

Orthoptera diversity 5.673 0.033* 14 

Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05 

 

  

 
10Figure 3.4. Effect of spotted knapweed density on arthropod order Shannon-Wiener diversity during a) 
the overall summer, b) June, c) July, d) August, n=56, df=49. 

Spotted knapweed and arthropod functional groups 
Herbivore density was consistently positively correlated to the density of spotted 

knapweed throughout most of the summer (Table 3.5, Figure 3.5 & 3.6). 
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11Table 3.5. Regression analyses results on the effect of spotted knapweed density (number of reads) on 
arthropod functional group density, n=56, df=51. 

Knapweed Density F P df 

Whole Summer    

Herbivore 3.842 0.055 55 

Omnivore 1.501 0.226 55 

Predator 0.296 0.588 55 

Detritivore 3.419 0.069 55 

Parasite 0.043 0.837 55 

May    

Herbivore 1.166 0.302 14 

Omnivore 3 0.109 14 

Predator 0.034 0.855 14 

Detritivore 0.111 0.243 14 

Parasite 0.001 0.977 14 

June    

Herbivore 0.262 0.616 15 

Omnivore 0.003 0.986 15 

Predator 0.169 0.687 15 

Detritivore 0.564 0.465 15 

Parasite 0.237 0.634 15 

July    

Herbivore 5.482 0.041* 12 

Omnivore 1.737 0.217 12 

Predator 1.883 0.200 12 

Detritivore 2.068 0.181 12 

Parasite 2.031 0.184 12 

August    

Herbivore 3.847 0.072 14 

Omnivore <0.0001 0.998 14 

Predator 0.184 0.675 14 

Detritivore 0.284 0.603 14 

Parasite 0.113 0.742 14 



52 
 

 
11Figure 3.5. Effects of spotted knapweed density on functional group density (total number of reads) 
during a) the overall summer, b) July, c) August, n=56, df=51. 
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12Figure 3.6. Arthropod functional group density (total number of reads) at no, low, medium, and high 
spotted knapweed density patches (±SE), during a) overall summer, b) May, c) June, d) July, e) August, 
n=20 per functional group. 
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There was no significant relationship between spotted knapweed density and arthropod 

functional group richness. 

12Table 3.6. Regression analyses of spotted knapweed density predicting arthropod functional group 
species richness, n=56, df=51. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Knapweed Density F P df 

Whole  Herbivore 0.075 0.786 55 

Summer Omnivore 0.073 0.788 55 

 Predator 0.004 0.949 55 

 Detritivore 0.106 0.745 55 

 Parasite 0.272 0.638 55 

May Herbivore 0.582 0.460 14 

 Omnivore 2.288 0.156 14 

 Predator 0.558 0.469 14 

 Detritivore 2.638 0.130 14 

 Parasite 1.802 0.204 14 

June Herbivore 0.374 0.551 15 

 Omnivore 0.046 0.833 15 

 Predator 0.317 0.582 15 

 Detritivore 0.132 0.722 15 

 Parasite 0.405 0.535 15 

July Herbivore 0.787 0.396 12 

 Omnivore 1.924 0.196 12 

 Predator 3.654 0.085 12 

 Detritivore 0.036 0.852 12 

 Parasite 1.229 0.293 12 

August Herbivore 0.149 0.706 14 

 Omnivore <0.001 0.975 14 

 Predator 0.002 0.964 14 

 Detritivore 0.085 0.776 14 

 Parasite 0.646 0.436 14 
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13Figure 3.7. Arthropod functional group species richness at no, low, medium, and high spotted knapweed 

density patches (±SE), during a) overall summer, b) May, c) June, d) July, e) August, n=20 per functional 

group. 

 



56 
 

DISCUSSION 

This study explored the effects of differing densities of the highly invasive plant spotted 

knapweed on grassland epigeal arthropod communities in the semi-arid grasslands of Southern 

Central British Columbia. As predicted, spotted knapweed presence had differing correlations 

with the density of different arthropod orders and functional groups. These correlations may have 

been through the absence of foraging or reproduction opportunities (Bernays and Graham 1988), 

or through changes in native plant community through competition (Hansen and Ortega 2009; 

Callaway and Ridenour 2004), and changes in abiotic ecosystem factors such as amount of bare 

ground (Fraser and Carlyle 2011). As predicted, spotted knapweed density was positively 

correlated with the density of a knapweed biological control agent, Larinus obtusus. 

Biological control agent 
Larinus obtusus is a species of true weevil known as the knapweed flower weevil. It was 

released as a biological control agent in the Lac du Bois Grasslands in 1992 (Gayton and Miller 

2012). L. obtusus is a host specific species that only feeds on the flowering heads of Centaurea 

species. The population has proliferated since its introduction and is now a common arthropod 

found in our sampling. Increased activity of L. obtusus in spotted knapweed areas may have 

resulted from the need for these beetles to search for suitable host plants to feed on. Frid et al. 

(2009) estimated the return on biocontrol investment for C. maculosa in British Columbia at $17 

for each dollar spent (Gayton and Miller 2012). Our findings show that L. obtusus is still at 

healthy populations within spotted knapweed patches in the Lac du Bois Grasslands where the 

weevils were first released almost thirty years ago. 

Spotted knapweed effects on arthropod orders 
In a mosaic of natural grasslands as seen in Lac du Bois Provincial Park, spotted 

knapweed is not significantly correlated with most arthropod communities.  However, 

Orthoptera (grasshoppers, locusts, and crickets) alpha diversity showed a positive relationship 

with spotted knapweed density for the overall summer data and specifically in June and August. 

An increase in Orthoptera diversity with high invasive species density was not predicted in this 

study but could be explained by understanding that grasshoppers prefer open-spaced 

environments. Increasing spotted knapweed density was correlated with more bare ground 
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(Chapter 2). A similar study observed higher Orthoptera richness in more open land use habitats 

when compared with natural ones (Chuo Beng et al. 2016). 

Spotted knapweed and arthropod functional groups 
Correlations between spotted knapweed density on arthropod functional group density 

and species richness were mostly non-existent but were also positive or negative for some 

functional groups. This is consistent with previous reports that functional groups differ in their 

responses to invasive species (Chuo Beng et al. 2016; Litt et al. 2013). The only significant 

functional group trends were an increase in herbivore density with increasing spotted knapweed 

density in July and August. These unexpected results are highly peculiar when compared to 

numerous other studies looking at herbivorous arthropods decreasing in density, species richness, 

or diversity in the presence of invasive plants (eg. Tallamy et al. 2010; Litt and Steidl 2010; 

Yoshioka and Kadoya 2010). These results also contradict those found in Chapter 2. A possible 

explanation for these discrepancies in data could have been the additional sweep net samples that 

were included in this Chapter. Leafhoppers (Cicadellidae) are a family of foliar true bugs that 

suck plant sap from grass, shrubs, or trees (Turner et al. 2010; Alyokhin et al. 2004). Many 

leafhoppers were found in our samples (Appendix G) for Chapter 3 that were not included in 

Chapter 2 due to their foliar habitat preference. Leafhoppers are highly adaptable generalist 

species that have been used as biological control agents for other invasive plants (Turner et al. 

2010), thus making them a great candidate to be present at high abundance and diversity in 

spotted knapweed patches. 

There was a perceived pattern of detritivore density decreasing with increasing spotted 

knapweed density when grouped into categorical data (Figure 3.6). Although not statistically 

significant, this correlation can be seen throughout all months of sampling and in Chapter 2.  

Higher density spotted knapweed sites were observed to have significantly less detritus material 

(Chapter 2). Low density spotted knapweed and pristine sites were dominated by rough fescue 

(Festuca scabrella), which grows in large clumps and has persistent old sheaths and leaf bases 

that provide ample detritus for detritivores to thrive on (Parish et al. 1996). It is expected that 

detritivores would not choose sites with low or no detritus available. 
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It is worth noting that this study had small sample sizes of only 20 samples per month. It 

is difficult to obtain statistically significant results with such small sample size; however, trends 

in the data indicate a need for further sampling over a larger time scale to confirm. 

DNA metabarcoding 
Arthropods are the most plentiful and varied animals on Earth, but comprehensive 

information on large-scale patterns of richness, endemism, and biogeography are lacking (Chuo 

Beng et al. 2016). There is a high cost in time, money, and labour associated with sorting and 

identifying samples from large-scale inventories. However, there is a growing representation of 

arthropods in biodiversity databases such as the Barcode of Life Database (BOLD). Continuous 

contribution to these databases will allow cheap and efficient monitoring methods, such as 

presented in this study, to be the preferred method for arthropod biodiversity assessments.  

A major limitation of the approach in this study is the accuracy of the primers at 

identifying Araneae (spiders). There were numerous spider species/genera manually observed in 

Chapter 2, that were not picked up by the primers in sequencing. We are currently unsure as to 

the reason for some of the Araneae manually identified not appearing in our sequenced results, as 

this primer combination has been effectively used in past studies including spiders (Chuo Beng 

et al. 2016). However, it should be noted that an additional forward and reverse primer should be 

used in combination with the ones in this study to accurately identify arthropod orders from 

interior BC. 

Comparisons with morphological arthropod identification 
When directly compared with morphological identification from Chapter 2, DNA 

metabarcoding is the more efficient and accurate method when it comes to identifying large 

samples and using species richness as a data parameter. This method will only become more 

robust and accurate as further samples are added to public reference databases, such as BOLD.  

However, number of reads, defined as each time an individual insect’s DNA was 

counted, from the sequencing output was not as reliable of a parameter for calculating relative 

density of arthropod communities when compared with drying and weighing arthropod biomass 

as done in chapter 2. This can be seen by the results of herbivores having higher densities in 

higher density spotted knapweed patches. Chapter 2 resulted in opposite findings for herbivores. 

This might have been due to many of the herbivores being larger-bodied individuals (such as 
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grasshoppers and moths) compared to other functional groups. Although steps were taken to try 

to avoid this (see Chuo Beng et al. 2016) more DNA from these individuals might have resulted 

in additional reads being amplified and a perceived higher density. Ji et al. simply stated that 

because the field of metabarcoding is advancing so rapidly, data sets are continuously subject to 

error and loss of information (2013). Many studies in the field to date have been to validate 

metabarcoding against standard morphological sampling and to develop more efficient pipelines 

(Ji et al. 2013). 
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CHAPTER 4: RESEARCH CONCLUSIONS 

RESEARCH SYNTHESIS 

The conclusions from Chapter 2 suggest that the density of spotted knapweed patches in 

semi-arid grasslands create numerous changes to site characteristics and interacting trophic 

relationships that contribute to differing biomass of arthropod functional groups. High densities 

of spotted knapweed were negatively correlated with plant biomass, leading to less forage and 

subsequent decreases in herbivorous arthropod biomass. The presumed allelopathic chemicals 

released into the soil from spotted knapweed possibly suppressed germination of native plants 

and resulted in more bare ground, higher ground temperatures, and less litter cover in sites with 

spotted knapweed. This provided a better hunting habitat for predator biomass at intermediate 

spotted knapweed densities, which was negated at high densities due to the lack of prey 

availability. Detritivore biomass was highest at pristine grassland sites and significantly lower at 

spotted knapweed invaded sites due to the lack of food availability with limited litter cover.  

Chapter 3 provides deeper insight into spotted knapweed effects on arthropod orders. 

Orthoptera alpha diversity was positively correlated with spotted knapweed density. However, 

other arthropod orders were not correlated with spotted knapweed density. Larinus obtusus, a 

biological control agent released in Lac du Bois in 1992 to control spotted knapweed, was 

observed at higher relative densities at higher spotted knapweed density sites (Gayton and Miller 

2012).   

This research will expand our knowledge of DNA metabarcoding methodology and of the 

growing database of Western North American arthropods, which will be directly applicable to 

future reclamation methods and environmental assessments on human-disturbed ecosystems. 

LIMITATIONS AND FUTURE RESEARCH 

One of the major limitations of this study is the lack of manipulation trials. It was not 

feasible on the current timescale to add an additional experimental trial to this project. However, 

this project could be greatly expanded by exploring species-specific interactions with spotted 

knapweed versus other native plants. Future researchers could conduct trials where chosen 

arthropod species are exposed to different plant food sources and observed throughout the period 

of their lifespan to determine the direct effects of invasive plants such as spotted knapweed on 
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specific arthropods. Additionally, continued sampling over the course of several years would 

give us better insight into spotted knapweed changing site characteristics and corresponding 

arthropod community changes through a timescale.  

Although DNA metabarcoding gave us greater depth of arthropod orders and specific 

species, several Araneae species manually identified did not appear in the sequencing results. 

This is likely a limitation of the primers used in our methodology not being universal enough to 

separate Araneae from other organisms. It is suggested that an additional forward and reverse 

primer be used in combination with the ones in this study to accurately identify arthropod orders 

from interior British Columbia. 

MANAGEMENT IMPLICATIONS 

Human activities such as mining, recreation, and farming are altering British Columbia 

grassland ecosystems; leaving them increasingly susceptible to anthropogenic-caused changes, 

such as the colonization of invasive plants.  These grasslands provide invaluable services to 

people and the environment. The results from this study contribute to our growing understanding 

of invasive plants in British Columbia grasslands.  

Invasive species 
The spread of invasive species is strongly shaped by trends in human trade and transport 

and can be dated as far back as the first human trade routes (Preston et al. 2004). Grasslands are 

one of the most endangered ecosystems in Canada and are highly susceptible to changes in 

ecosystem energy flows due to the introduction of invasive plants (Aguair 2005). Grasslands 

provide invaluable services to people and the environment including carbon sequestration 

(Wilson 2009; Costanza et al. 1998), water filtration (Wilson 2009) wildlife management, forage 

for grazing livestock (Aguair 2005), and recreational areas. However, the constant use of 

grasslands by humans is leading to the anthropogenic spread of invasive plants – such as spotted 

knapweed – throughout grasslands, altering plant and animal biodiversity (Mack et al. 2000).  

With the help of studies, such as this one, that give us better insight into specific 

correlations associated with invasions, such as patch density influencing arthropod communities, 

we can inform the public and policy makers to better manage invasion potential. Knowing that 

patch density of spotted knapweed negatively correlates with herbivores and detritivores lets us 
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target specific invaded areas where, for example, an herbivorous arthropod species of interest 

inhabits. More in depth identification of herbivorous arthropods such as Orthoptera species will 

be possible with the expansion of barcoding databases. The spread of invasive species is one of 

the main global threats to biodiversity (Vitousek et al. 1996) and one of the hardest threats to 

manage. Lac du Bois grasslands protected area has been managed for the invasion of spotted 

knapweed since 1978 through chemical spot treatments and the release of biocontrol agents 

(Ministry of Environment, Lands and Parks 2000). However, there has still been continual spread 

of the plant through the grassland in part due to lack of education by recreational park users.  

This research may help gain public awareness of spotted knapweed in the Lac du Bois region.  

Any knowledge gained about specific species interactions of invasions is beneficial in educating 

management at a local level. 

Mining site reclamation 
Mining is a significant industry that contributes to Canada’s economy by employing more 

than 596,000 workers and contributing $57.6 billion to Canada’s gross domestic product in 2016 

(Mining Association of Canada 2017). Although it is economically beneficial and an essential 

industry to support society, mining adversely affects the surrounding terrestrial environment, 

including grassland ecosystems. Some environmental impacts of mining include erosion, the 

formation of sinkholes, landscape alterations (Mol and Ouboter 2004), changes to vegetation 

communities, and the contamination of soil, groundwater, and surface water (Salomons 1995).  It 

is mandatory in Canada that mining operations track the changes to biodiversity and ecosystem 

functioning impacted by their mining activities (New Gold Inc. 2015). They must also 

demonstrate the effectiveness of programs implemented for site reclamation.  

Historically, land reclamation efforts had the primary goal of reestablishing vegetation, 

but this narrow view can result in failed efforts (Simmers 2010; Fagan 2008). A recent trend 

considers mine reclamation in terms of the whole ecosystem, including biodiversity targets and 

considerations for all ecosystem functions and services (Garris 2016; Fraser 2015). However, the 

industry lacks reliable and sensitive tools to assess environmental health, from the microbial 

level to the full ecosystem level. Ecosystem-based approaches informed by molecular tools, such 

as DNA metabarcoding, have the power, sensitivity and the accessibility for application in 

developing healthy soils, building food web structures, increasing species biodiversity, and 

addressing specific species of interest (Fraser 2015).  
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There is currently a lack of standardized methods and procedures in reclamation practice 

within British Columbia. Through the help of this study, standard operating procedures (SOPs) 

and guidelines can be drafted to help mine personnel apply and use the biological information 

produced by this project and through BOLD. This study implemented DNA metabarcoding as an 

expedited method for arthropod community identification that can be directly implemented for 

pre- and post- mining site environmental assessments and reclamation strategies. 
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Appendix A. Plant species identified from all sites in Lac du Bois. 

Common Name Latin Name Native or Non-native 
Alfalfa Medicago sativa Non-Native 
American vetch Vicia americana Native 
Arrowleaf balsamroot Balsamorhiza sagittata Native 
Baltic rush Juncus balticus Native 
Black medick Medicago lupulina Non-Native 
Blue wildrye Elymus glaucus Native 
Bluebunch wheatgrass Pseudoroegneria spicata Native 
Brown eyed susan Rudbeckia triloba Native 
Canada thistle Cirsium arvense Non-Native 
Chicory Cichorium intybus Non-Native 
Chocolate lily Fritillaria affinis Native 
Common dandelion Taraxacum officinale Non-Native 
Common harebell Campanula rotundifolia Native 
Corn brome Bromus squarrosus Non-Native 
Crested wheatgrass Agropyron cristatum Non-Native 
Diffuse knapweed Centaurea diffusa Non-Native 
Fairy candelabra Androsace occidentalis Non-Native 
Fern-leaved desert parsley Lomatium dissectum Native 
Field locoweed Oxytropis campestris Native 
Field pussytoes Antennaria neglecta Native 
Field sedge Carex praegracilis Native 
Graceful cinquefoil Potentilla gracilis Native 
Hillside milk vetch Astragalus collinus Native 
Holboells rockcress Arabis holboellii Native 
Junegrass Koeleria macrantha Native 
Kentucky bluegrass Poa pratensis Native 
Lemonweed Oxytropis campestris Native 
Long leaved daisy Erigeron corymbosus Native 
Meadow death camas Toxicoscordion venenosum Native 
Narrow leaved collomia Collomia linearis Native 
Narrow leaved hawkweed Hieracium umbellatum Native 
Needle and thread grass Hesperostipa comata Native 
Nodding onion Allium cernuum Native 
Nootka rose Rosa nutkana Native 
Orange arnica Arnica fulgens Native 
Oval leaved blueberry Vaccinium ovalifolium Native 
Pale comandra Comandra umbellata Native 
Parsnip flowered buckwheat Eriogonum heracleoides Native 
Pumpbelly brome Bromus inermis pumpellianus Native 
Purple peavine Lathyrus nevadensis Native 
Rosy pussytoes Antennaria rosea Native 
Rough fescue Festuca scabrella Native 
Round-leaved alumroot Heuchera cylindrica Native 



A2 
 

 

Sagebrush mariposa lily Calochortus macrocarpus Native 
Sandberg’s bluegrass Sandbergs bluegrass Native 
Slender hawksbeard Crepis atribarba Native 
Small flowered woodland star Lithophragma parviflorum Native 
Spotted knapweed Centaurea stoebe Non-Native 
Spreading needlegrass Hesperostipa comata Native 
Stiff needlegrass Achnatherum occidentale Native 
Thompsons paintbrush Castilleja thompsonii Native 
Timber milk vetch Astragalus miser Native 
Tower mustard Turritis glabra Native 
Unknown flower spp 1 N/A N/A 
Unknown flower spp 2 N/A N/A 
Unknown flower spp 3 N/A N/A 
Western spring beauty Claytonia lanceolata Native 
Western stickseed Lappula occidentalis Native 
Yarrow Achillea millefolium Native 
Yellow rattle Rhinanthus minor Native 
Yellow salsify Tragopogon dubius Non-Native 
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Appendix B. Arthropod families sampled from each functional group ranked as most to least 

frequently sampled. 

Sampling 
Frequency 

Herbivore Omnivore Predator Detritivore Parasite 

Most 
Frequent 

• Drosophilidae 
(small fruit 
flies) 

• Rhopalidae 
(scentless 
plant bugs) 

• Curculionidae 
(weevils) 

• Thysanoptera 
(thrips) 

• Carabidae 
(ground 
beetles)  
genus Amara 

• Acrididae 
(grasshopper 
family) 

• Cicadellidae 
(leafhoppers) 

• Tephritidae 
(fruit flies) 

• Pentatomidae 
(stink bugs) 

• Erebidae 
(moth family) 

• Tipulidae 
(crane flies) 

• Formicidae 
(ants) 

• Gryllidae 
(crickets) 

• Forficulidae 
(earwigs) 

• Muscidae 
(house 
flies) 

• Syrphidae 
(hover flies) 

• Crabronidae 
(wasp 
family) 

• Carabidae 
(ground 
beetles) 

• Lycosidae 
(wolf spiders) 

• Thomisidae 
(crab spiders)  

• Araneae*  
numerous other 
spiders 
unidentified 

• Staphylinidae 
(rove beetles) 

• Lithobiomorpha 
(stone 
centipedes) 

• Elateridae 
(click beetles) 

• Dolichopodidae 
(long-legged 
flies) 

• Chrysopidae 
(green 
lacewings) 

• Collembolla* 
(springtails) 

• Microcoryphia* 
(jumping 
bristletails) 

• Diptera* 
(numerous flies 
unidentified) 

• Diplura*   
(two-pronged 
bristletails) 

• Oniscidae (sow 
bugs) 

• Armadillidiidae 
(pill bugs) 

• Silphidae 
(carrion 
beetles) 

• Demodecidae 
(parasitic 
mites) 

• Trombiculidae 
(chigger 
mites) 

• Ixodidae (hard 
ticks) 

• Culicidae 
(mosquito) 

• Pulicidae 
(fleas) 

• Tachinidae 
(parasitoid 
flies) 

Least 
Frequent 

     

*Did not distinguish to family level, only order 
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Appendix C. Analysis of variance results of the effects of spotted knapweed density on arthropod 
functional group species richness, n=20. 

 Mean    df F P 
Knapweed Density None Low Medium High    
Summer 2016        
     Overall Species Richness 5.8 5.0 5.7 6.7 3 0.587 0.626 
     Herbivore Richness 1.1 1.0 1.1 1.2 3 0.035 0.991 
     Omnivore Richness 1.8 2.1 2.2 2.6 3 0.638 0.593 
     Predator Richness 1.9 1.2 1.6 2.0 3 1.109 0.351 
     Detritivore Richness 0.5 0.4 0.5 0.4 3 0.197 0.898 
     Parasite Richness 0.5 0.3 0.3 0.5 3 0.557 0.645 
May        
     Overall Species Richness 4.6 7.8 5.4 5.6 3 1.133 0.365 
     Herbivore Richness 0.4 1.6 0.8 1.0 3 1.786 1.190 
     Omnivore Richness 1.8b 4.0a 1.8b 1.8b 3 2.521 0.095 
     Predator Richness 2.2 1.6 2.4 2.0 3 0.265 0.849 
     Detritivore Richness 0.2 0.2 0.2 0.4 3 0.143 0.933 
     Parasite Richness 0.2 0.4 0.2 0.4 3 0.266 0.848 
June        
     Overall Species Richness 9.4 6.4 8.6 10.8 3 0.820 0.502 
     Herbivore Richness 2.4 1.0 1.2 1.4 3 1.611 0.226 
     Omnivore Richness 2.2 2.2 3.0 3.6 3 0.866 0.479 
     Predator Richness 2.2 2.4 2.0 3.8 3 0.939 0.445 
     Detritivore Richness 1.4 0.8 1.6 0.6 3 1.554 0.239 
     Parasite Richness 1.0 0.2 0.8 1.0 3 0.735 0.546 
July         
     Overall Species Richness 5.4 4.0 6.4 7.2 3 1.738 0.199  
     Herbivore Richness 1.0 0.6 1.4 0.8 3 0.833 0.495  
     Omnivore Richness 1.8 1.8 3.2 3.4 3 1.529 0.246  
     Predator Richness 2.0a 0.4b 1.6a 2.0a 3 7.564 0.002*  
     Detritivore Richness 0.2 0.4 0.2 0.2 3 0.222 0.879  
     Parasite Richness 0.6 0.6 0.2 0.6 3 0.381 0.768  
August         
     Overall Species Richness 4.0 2.0 2.4 3.2 3 0.354 0.787  
     Herbivore Richness 0.6 1.0 1.0 1.4 3 0.688 0.572  
     Omnivore Richness 1.6a 0.4b 0.8ab 1.4ab 3 3.061 0.058  
     Predator Richness 1.4 0.4 0.6 0.4 3 0.405 0.752  
     Detritivore Richness 0.2 0.2 0 0.2 3 0.333 0.801  
     Parasite Richness 0.2 0 0 0 3 1.000 0.418  

 Bold values indicate statistical significance at P<0.1, * indicates significance at P<0.05. 
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Appendix D. Factor loading of the monthly summer principal components analysis. 

 Component 1 Component 2 Component 3 
May    
    Herbivore 0.523 -0.251 0.594 
    Omnivore -0.150 -0.703     -   
    Predator -0.276 -0.637 -0.163 
    Detritivore 0.616 -0.172     - 
    Parasite 0.497     - -0.785 
    Standard Deviation 1.442 1.235 0.842 
    Variance (%) 41.6 30.5 14.2 
    Cumulative Variance (%) 41.6 72.1 86.3 
June    
    Herbivore -0.543 0.271     - 
    Omnivore -0.529     - 0.357 
    Predator -0.231 -0.754 0.449 
    Detritivore -0.343 -0.438 -0.816 
    Parasite -0.504 0.404     - 
    Standard Deviation 1.743 1.105 0.782 
    Variance (%) 60.8 24.4 12.2 
    Cumulative Variance (%) 60.8 85.2 97.4 
July    
    Herbivore -0.105     - 0.956 
    Omnivore     - 0.697 -0.137 
    Predator 0.180 0.666     - 
    Detritivore -0.702     - -0.224 
    Parasite -0.680 0.262     - 
    Standard Deviation 1.342 1.259 1.029 
    Variance (%) 36.0 31.7 21.2 
    Cumulative Variance (%) 36.0 67.7 88.9 
August    
    Herbivore -0.348 0.935     - 
    Omnivore -0.455 -0.198 0.849 
    Predator -0.473 -0.121 -0.287 
    Detritivore -0.466 -0.207 -0.424 
    Parasite -0.481 -0.169 -0.129 
    Standard Deviation 2.046 0.751 0.390 
    Variance (%) 83.7 11.3 3.0 
    Cumulative Variance (%) 83.7 95.0 98.0 
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Appendix E. Principal components analyses for each month of sampling; May (i), June (ii), July 

(iii), and August (iv); examining the influence of each functional group on overall arthropod 

community composition graphed using (a) components 1 and 2, and (b) components 2 and 3. 
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Appendix F. Multiple regression analyses for significant site variables predicting principal component 1, 2, and 3 for each month of 

sampling, n=20, df=56.  

     Variables      
   

 
Model Values 

  Intercept Spotted knapweed 
biomass (g/m2) 

Plant biomass 
(g/m2) 

Litter Cover 
(%) 

Bare Ground 
Cover (%) 

Daily Ground 
Temperature 
(oC) 

  F-stat P R2 df       
May Component 1 1.670 0.212 0.323 18 SE 4.650 

T -0.357 
P 0.726 

SE 0.171 
T 1.742 
P 0.103 

SE 0.871  
T 0.206 
P 0.840 

SE 2.79 0 
T 0.445 
P 0.663 

SE 2.914 
T -1.085 
P 0.296 

- 

 Component 2 1.445 0.271 0.292 18 SE 4.072 
T -1.957 
P 0.071 

SE 4.072 
T -1.957 
P 0.071 

SE 0.763 
T 1.296 
P 0.216 

SE 2.443 
T 0.681 
P 0.507 

SE 2.552 
T 0.861 
P 0.404 

- 

 Component 3 0.297 0.875 0.078 18 SE 3.170  
T 0.170 
P 0.867 

SE 0.122 
T 0.327 
P 0.749 

SE 0.594  
T 0.053 
P 0.958 

SE 1.902  
T -0.552 
P 0.590 

SE 1.986  
T -0.118 
P 0.908 

- 

June Component 1 1.391 0.286 0.332 19 SE 7.441  
T -1.619 
P 0.128 

SE 0.222 
T 1.988 
P 0.067 

SE 1.091  
T 0.705 
P 0.493 

SE 3.301  
T 0.136 
P 0.893 

SE 3.854  
T -0.686 
P 0.504 

SE 0.198  
T 1.961 
P 0.017* 

 Component 2 0.289 0.911 0.094 19 SE 5.494  
T 0.097 
P 0.924 

SE 0.164  
T -0.344 
P 0.736 

SE 0.806  
T -0.260 
P 0.799 

SE 2.442  
T 0.606 
P 0.554 

SE 2.846  
T 0.022 
P 0.983 

SE 0.146  
T -0.113 
P 0.912 

 Component 3 1.625 0.217 0.367 19 SE 3.249  
T 1.242 
P 0.235 

SE 0.097  
T 0.457 
P 0.655 

SE 0.476  
T -2.098 
P 0.054 

SE 1.444  
T 0.886 
P 0.391 

SE 1.683  
T 0.214 
P 0.833 

SE 0.086  
T 0.021 
P 0.983 
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July Component 1 0.455 0.802 0.140 19 SE 6.503  

T 0.033 
P 0.974 

SE 0.193  
T -0.490 
P 0.632 

SE 0.955  
T -0.484 
P0.636 

SE 2.889  
T 0.948 
P 0.359 

SE 3.260  
T 1.314 
P 0.210 

SE 0.122  
T -0.336 
P 0.742 

 Component 2 0.521 0.757 0.157 19 SE 6.041  
T -0.136 
P 0.894 

SE 0.179  
T -1.055 
P 0.309 

SE 0.887  
T 0.404 
P0.692 

SE 2.684  
T 0.166 
P 0.870 

SE 3.029  
T 0.784 
P 0.446 

SE 0.114  
T -0.605 
P 0.555 

 Component 3 1.615 0.220 0.366 19 SE 4.281  
T 1.791 
P 0.095 

SE 0.127  
T -1.781 
P 0.097 

SE 0.629  
T -1.443 
P 0.171 

SE 1.902  
T 0.715 
P 0.487 

SE 2.146  
T 0.835 
P 0.418 

SE 0.081  
T -1.983 
P 0.067 

Aug Component 1 0.715 0.622 0.203 19 SE 9.543  
T 0.166 
P 0.871 

SE 0.283  
T 0.514 
P 0.616 

SE 1.402  
T -1.147 
P0.271 

SE 4.239  
T 1.145 
P 0.272 

SE 4.784  
T -0.583 
P0.569 

SE 0.180  
T 0.944 
P 0.361 

 Component 2 1.56 0.235 0.358 19 SE 3.146  
T 0.493 
P 0.629 

SE 0.093  
T 1.286 
P 0.219 

SE 0.462  
T -1.478 
P 0.162 

SE 1.398  
T 0.595 
P 0.561 

SE 1.577  
T -0.652 
P 0.525 

SE 0.059  
T 1.02 
P 0.324 

 Component 3 0.313 0.897 0.101 19 SE 0.093  
T -0.210 
P 0.837 

SE 0.005  
T -1.032 
P 0.319 

SE 0.028  
T 0.534 
P 0.601 

SE 0.085 
T -0.397  
P 0.697 

SE 0.097  
T 0.119 
P 0.907 

SE 0.036  
T -0.002 
P 0.999 
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Appendix G. Associated taxonomic identification for each OTU in sequenced results. 

OT
U 
ID 

Taxonomy Phylum Class Order Family Genus Species 

001 GS|100.0|BOLD:AAZ17
68 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Litomiris s:Litomiris 
curtus 

002 GS|99.7|BOLD:AAV021
9 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Rhyparochromid
ae 

g:Slaterobius s:Slaterobius 
insignis 

003 GS|100.0|BOLD:ACY97
29 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Tenebrionidae g:Eleodes s:Eleodes 
vandykei 

004 GS|100.0|BOLD:AAB35
00 

p:Arthropo
da 

c:Insecta o:Diptera f:Tephritidae g:Urophora s:Urophora 
cardui 

005 GS|100.0|BOLD:AAB50
81 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Leptopterna s:Leptopterna 
dolabrata 

006 GS|100.0|BOLD:AAA82
78 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Scutelleridae g:Homaemus s:Homaemus 
aeneifrons 

007 GS|100.0|BOLD:AAG55
07 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae g:Chironomus s:Chironomus 
atrella 

008 GS|100.0|BOLD:AAB86
38 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Litomiris s:Litomiris 
debilis 

009 GS|99.7|BOLD:AAF710
1 

p:Arthropo
da 

c:Insecta o:Diptera f:Fanniidae g:Fannia s:Fannia 
canicularis 

010 GS|99.7|BOLD:AAA876
4 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Camnula s:Camnula 
pellucida 

011 GS|91.3|BOLD:ABX401
8 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Dermestidae g:Dermestes s:Dermestes 
caninus 
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012 GS|100.0|BOLD:ACE53
91 

p:Arthropo
da 

c:Insecta o:Diptera f:Tephritidae g:Chaetorelli
a 

 

013 GS|99.7|BOLD:AAH415
3 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropida
e  

 
 

014 GS|99.3|BOLD:AAH041
3 

p:Arthropo
da 

c:Insecta o:Coleoptera 
  

015 GS|100.0|BOLD:AAD06
42 

p:Arthropo
da 

c:Insecta o:Diptera f:Muscidae g:Helina s:Helina 
reversio 

016 GS|100.0|BOLD:AAD79
82 

p:Arthropo
da 

c:Insecta o:Diptera f:Culicidae g:Aedes s:Aedes 
campestris 

017 GS|100.0|BOLD:AAE04
06 

p:Arthropo
da 

c:Insecta o:Hymenoptera f:Formicidae g:Formica s:Formica 
lasioides 

018 GS|100.0|BOLD:AAB10
98 

p:Arthropo
da 

c:Insecta o:Diptera f:Culicidae g:Aedes s:Aedes 
excrucians 

019 GS|99.6|BOLD:AAG879
7 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Diplocolenus s:Diplocolenus 
configuratus 

020 GS|100.0|BOLD:ACJ03
04 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Phytocoris 

021 GS|99.7|BOLD:AAA519
5 

p:Arthropo
da 

c:Insecta o:Lepidoptera f:Noctuidae g:Lacinipolia s:Lacinipolia 
pensilis 

022 GS|99.7|BOLD:AAQ007
2 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Elateridae g:Selatosomus s:Selatosomus 
semimetallicus 

023 GS|100.0|BOLD:AAG43
33 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Staphylinidae g:Xantholinus s:Xantholinus 
linearis 

024 GS|99.7|BOLD:AAF796
9 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Pentatomidae g:Thyanta s:Thyanta 
pallidovirens 

025 GS|97.0|BOLD:ACJ831
9 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Meromyza 
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026 GS|99.3|BOLD:ACF401
5 

p:Arthropo
da 

c:Insecta o:Diptera f:Tephritidae g:Campiglossa s:Campiglossa 
genalis 

027 GS|100.0|BOLD:AAG32
86 

p:Arthropo
da 

c:Insecta o:Diptera f:Phoridae g:Megaselia 

028 GS|99.7|BOLD:ACE693
2 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Arphia s:Arphia 
pseudonietana 

029 GS|100.0|BOLD:AAB88
17 

p:Arthropo
da 

c:Insecta o:Diptera f:Muscidae g:Muscina s:Muscina 
levida 

030 GS|100.0|BOLD:AAZ00
82 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Tenebrionidae g:Helops 
 

031 GS|99.7|BOLD:AAE307
3 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Silphidae g:Thanatophilus s:Thanatophilus 
lapponicus 

032 GS|100.0|BOLD:AAG87
99 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Chlamydatus s:Chlamydatus 
keltoni 

033 GS|100.0|BOLD:ACF12
57 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Adelphocoris s:Adelphocoris 
lineolatus 

034 GS|100.0|BOLD:AAG88
21 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Doratura s:Doratura 
stylata 

035 GS|99.7|BOLD:AAC820
4 

p:Arthropo
da 

c:Insecta o:Lepidoptera f:Noctuidae g:Euxoa s:Euxoa bochus 

036 GS|98.3|BOLD:AAI445
5 

p:Arthropo
da 

c:Arachnid
a 

o:Araneae f:Araneidae g:Metepeira s:Metepeira 
palustris 

037 GS|99.7|BOLD:AAG287
5 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Ceratagallia s:Ceratagallia 
cinerea 

039 GS|99.3|BOLD:AAM73
41 

p:Arthropo
da 

c:Insecta o:Diptera f:Heleomyzidae g:Oecothea s:Oecothea 
fenestralis 

040 GS|99.0|BOLD:ACA622
0 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Steiroxys s:Steiroxys cf 
trilineata 
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041 GS|98.7|BOLD:AAB489
1 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Silphidae g:Nicrophorus s:Nicrophorus 
investigator 

042 GS|100.0|BOLD:AAB76
00 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Curculionidae g:Larinus s:Larinus 
obtusus 

043 GS|100.0|BOLD:ACB09
46 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae g:Smittia 
 

044 GS|99.7|BOLD:AAV026
4 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Latalus s:Latalus 
mundus 

045 GS|100.0|BOLD:AAG51
98 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Curculionidae g:Otiorhynchus s:Otiorhynchus 
ovatus 

046 GS|100.0|BOLD:AAG02
43 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Silphidae g:Nicrophorus s:Nicrophorus 
guttula 

047 GS|98.9|BOLD:AAA827
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Scutelleridae g:Homaemus s:Homaemus 
aeneifrons 

048 GS|99.7|BOLD:AAF989
1 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Gryllidae g:Oecanthus s:Oecanthus 
nigricornis 

050 GS|99.3|BOLD:ACN928
4 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae 
  

051 GS|98.7|BOLD:AAY885
4 

p:Arthropo
da 

c:Insecta o:Coleoptera 
  

052 GS|99.3|BOLD:ABZ140
5 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Lygus s:Lygus borealis 

053 GS|100.0|BOLD:AAP75
60 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Meromyza 

054 GS|98.6|BOLD:ACM71
48 

p:Arthropo
da 

c:Insecta o:Coleoptera 
  

055 GS|99.3|BOLD:AAD059
1 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Rhopalidae g:Harmostes s:Harmostes 
reflexulus 
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056 GS|99.7|BOLD:AAL282
1 

p:Arthropo
da 

c:Insecta o:Diptera f:Muscidae g:Phaonia s:Phaonia 
apicalis 

057 GS|81.5|BOLD:AAG888
6 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Phytocoris 

058 GS|100.0|BOLD:AAY28
30 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Polymerus s:Polymerus 
balli 

059 GS|99.7|BOLD:AAB885
1 

p:Arthropo
da 

c:Insecta o:Diptera f:Drosophilidae g:Drosophila s:Drosophila 
affinis 

060 GS|100.0|BOLD:AAI93
41 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Thyreocoridae g:Corimelaena s:Corimelaena 
incognita 

061 GS|100.0|BOLD:AAA73
74 

p:Arthropo
da 

c:Insecta o:Diptera f:Syrphidae g:Sphaerophoria s:Sphaerophoria 
philanthus 

062 GS|100.0|BOLD:AAC28
55 

p:Arthropo
da 

c:Insecta o:Diptera f:Sepsidae g:Sepsis s:Sepsis 
neocynipsea 

063 GS|100.0|BOLD:AAA53
08 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae g:Cricotopus 

064 GS|100.0|BOLD:ACB64
54 

p:Arthropo
da 

c:Insecta o:Diptera f:Mycetophilidae g:Cordyla 
 

065 GS|79.3|BOLD:ACB645
4 

p:Arthropo
da 

c:Insecta o:Diptera f:Mycetophilidae g:Cordyla 
 

067 GS|99.3|BOLD:AAB185
0 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Aphrophoridae g:Philaenus s:Philaenus 
spumarius 

068 GS|100.0|BOLD:AAZ19
25 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Coquillettia s:Coquillettia 
insignis 

069 GS|100.0|BOLD:AAI55
60 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Scutelleridae g:Eurygaster s:Eurygaster 
amerinda 

070 GS|100.0|BOLD:ACL32
36 

p:Arthropo
da 

c:Insecta o:Diptera f:Fanniidae g:Fannia s:Fannia 
coracina 
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071 GS|97.7|BOLD:ACB908
8 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Aphanotrigonu
m 

s:Aphanotrigonu
m trilineatum 

072 GS|100.0|BOLD:ACA63
22 

p:Arthropo
da 

c:Insecta o:Coleoptera 
  

073 GS|100.0|BOLD:AAC79
93 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Alydidae g:Alydus s:Alydus 
conspersus 

074 GS|100.0|BOLD:AAC83
22 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Carabidae g:Harpalus s:Harpalus 
opacipennis 

076 GS|100.0|BOLD:AAG93
73 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Balclutha s:Balclutha 
rhenana 

077 GS|77.3|BOLD:AAN905
2 

p:Arthropo
da 

c:Insecta o:Diptera 
   

078 GS|89.0|BOLD:AAE394
3 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Plagiognathus s:Plagiognathus 
chrysanthemi 

079 GS|99.7|BOLD:AAC556
4 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Adelphocoris s:Adelphocoris 
rapidus 

080 GS|99.7|BOLD:AAA221
8 

p:Arthropo
da 

c:Insecta o:Odonata f:Coenagrionidae g:Enallagma s:Enallagma 
cyathigerum 

081 GS|72.1|BOLD:AAX354
8 

p:Arthropo
da 

c:Insecta o:Odonata 
  

082 GS|99.7|BOLD:ACG186
8 

p:Arthropo
da 

c:Insecta o:Diptera f:Ephydridae g:Scatella s:Scatella 
stagnalis 

083 GS|99.3|BOLD:AAF273
5 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Silphidae g:Nicrophorus s:Scatella 
stagnalis 

084 GS|99.7|BOLD:AAE045
6 

p:Arthropo
da 

c:Insecta o:Dermaptera f:Forficulidae g:Forficula s:Scatella 
stagnalis 

085 GS|99.0|BOLD:AAY770
1 

p:Arthropo
da 

c:Insecta o:Coleoptera 
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086 GS|100.0|BOLD:AAN83
07 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Balclutha s:Balclutha 
manitou 

087 GS|100.0|BOLD:AAW1
617 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Staphylinidae g:Aleochara s:Aleochara 
rubricalis 

088 GS|96.7|BOLD:AAZ176
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Litomiris s:Litomiris 
curtus 

089 GS|96.7|BOLD:ACA366
2 

p:Arthropo
da 

c:Insecta o:Coleoptera 
  

090 GS|100.0|BOLD:ABX39
26 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Auridius s:Auridius 
auratus 

091 GS|99.0|BOLD:AAD048
2 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae g:Psectrocladius 

092 GSL|89.2|BOLD:ACE79
81 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Aeropedellus 

093 GS|99.3|BOLD:AAA267
4 

p:Arthropo
da 

c:Insecta o:Diptera f:Drosophilidae g:Drosophila s:Drosophila 
subquinaria 

095 GS|100.0|BOLD:AAQ00
54 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Carabidae g:Harpalus s:Harpalus 
laticeps 

096 GS|100.0|BOLD:ACP40
88 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Incertella 

097 GS|99.7|BOLD:AAF678
8 

p:Arthropo
da 

c:Insecta o:Hymenoptera f:Formicidae g:Formica s:Formica 
neogagates 

098 GS|95.2|BOLD:AAZ176
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Litomiris s:Litomiris 
curtus 

100 GS|100.0|BOLD:AAG21
23 

p:Arthropo
da 

c:Insecta o:Diptera f:Tachinidae g:Dinera s:Dinera 
grisescens 

101 GS|100.0|BOLD:ACG79
00 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Meromyza 
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102 GS|100.0|BOLD:ACI716
3 

p:Arthropo
da 

c:Arachnid
a 

o:Araneae f:Araneidae g:Metepeira s:Metepeira 
palustris 

103 GS|99.7|BOLD:AAN552
6 

p:Arthropo
da 

c:Insecta o:Diptera f:Dolichopodidae 
 

105 GS|99.7|BOLD:AAE194
1 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Stenodema s:Stenodema 
vicina 

106 GS|100.0|BOLD:ACB09
07 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae 
 

107 GS|97.3|BOLD:AAZ097
7 

p:Arthropo
da 

c:Insecta o:Coleoptera 
  

108 GS|97.7|BOLD:AAD578
9 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Leptopterna s:Leptopterna 
amoena 

109 GS|97.4|BOLD:AAQ007
2 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Elateridae g:Selatosomus s:Selatosomus 
semimetallicus 

111 GS|93.3|BOLD:AAG664
7 

p:Arthropo
da 

c:Insecta o:Diptera f:Bibionidae g:Bibio 
 

113 GS|99.0|BOLD:AAG066
6 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Gryllidae g:Gryllus s:Gryllus veletis 

116 GS|100.0|BOLD:ACY99
94 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Tenebrionidae g:Eleodes s:Eleodes 
pimelioides 

118 GS|99.7|BOLD:AAG894
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Reduviidae g:Sinea s:Sinea diadema 

120 GS|95.0|BOLD:ACR750
1 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Carabidae g:Calosoma s:Calosoma 
wilkesii 

122 GS|76.4|BOLD:ACT158
3 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae 
 

124 GS|100.0|BOLD:AAV02
57 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Sorhoanus s:Sorhoanus 
uhleri 
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125 GS|99.3|BOLD:ABY536
3 

p:Arthropo
da 

c:Insecta o:Diptera f:Sarcophagidae g:Metopia 

127 GS|100.0|BOLD:ACR86
48 

p:Arthropo
da 

c:Insecta o:Diptera f:Lauxaniidae g:Minettia s:Minettia 
lupulina 

128 GS|99.7|BOLD:AAD578
9 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Leptopterna s:Leptopterna 
amoena 

129 GS|92.0|BOLD:ABA235
1 

p:Arthropo
da 

c:Insecta o:Diptera f:Fanniidae g:Fannia s:Fannia mutica 

130 GS|100.0|BOLD:AAD65
43 

p:Arthropo
da 

c:Insecta o:Hymenoptera f:Formicidae g:Aphaenogaster s:Aphaenogaster 
occidentalis 

133 GS|99.7|BOLD:AAN653
1 

p:Arthropo
da 

c:Collembo
la 

o:Entomobryomorp
ha 

f:Tomoceridae 
 

134 GS|90.3|BOLD:AAC577
9 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Gomphoceripp
us 

s:Gomphoceripp
us rufus 

135 GS|100.0|BOLD:AAL77
55 

p:Arthropo
da 

c:Insecta o:Diptera f:Sphaeroceridae g:Spelobia s:Spelobia tufta 

136 GS|100.0|BOLD:AAA45
55 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Melanoplus s:Melanoplus 
borealis 

140 GS|99.7|BOLD:ACJ831
9 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Meromyza 

141 GS|100.0|BOLD:ACD12
08 

p:Arthropo
da 

c:Insecta o:Diptera f:Phoridae g:Megaselia 

142 GS|97.7|BOLD:AAV153
0 

p:Arthropo
da 

c:Insecta o:Archaeognatha f:Machilidae 
 

143 GS|94.3|BOLD:ACI3534 p:Arthropo
da 

c:Insecta o:Coleoptera f:Chrysomelidae g:Acanthoscelides 

144 GS|96.4|BOLD:AAB863
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Litomiris s:Litomiris 
debilis 
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146 GS|98.3|BOLD:ACZ022
5 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Tenebrionidae g:Eleodes s:Eleodes 
rotundipennis 

147 GS|95.7|BOLD:ACA622
0 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Steiroxys s:Steiroxys cf 
trilineata 

149 GS|97.0|BOLD:AAN656
1 

p:Arthropo
da 

c:Collembo
la 

o:Entomobryomorp
ha 

f:Entomobryidae 
 

152 GS|93.3|BOLD:ABX392
6 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Auridius s:Auridius 
auratus 

153 GS|100.0|BOLD:AAG27
21 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Pentatomidae g:Thyanta 

154 GS|100.0|BOLD:ACE52
83 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Coreidae g:Coriomeris s:Coriomeris 
humilis 

156 GS|100.0|BOLD:ACI306
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Ceratagallia s:Ceratagallia 
siccifolia 

158 GS|99.0|BOLD:ACI7834 p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae g:Cricotopus 

159 GSL|91.5|BOLD:AAG2
875 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Ceratagallia 

161 GS|100.0|BOLD:AAZ11
09 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Tenebrionidae g:Coniontis s:Coniontis 
ovalis 

163 GS|99.7|BOLD:AAG150
3 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Tricimba s:Tricimba 
melancholica 

166 GS|90.7|BOLD:AAZ176
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Litomiris s:Litomiris 
curtus 

168 GS|99.7|BOLD:ACI4503 p:Arthropo
da 

c:Insecta o:Diptera f:Lonchaeidae 
 

170 GS|98.8|BOLD:AAA638
1 

p:Arthropo
da 

c:Arachnid
a 

o:Araneae f:Tetragnathidae g:Tetragnatha s:Tetragnatha 
laboriosa 
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171 GS|99.3|BOLD:AAG272
1 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Pentatomidae g:Thyanta 

172 GS|100.0|BOLD:AAG72
84 

p:Arthropo
da 

c:Insecta o:Diptera f:Sphaeroceridae g:Pullimosina s:Pullimosina 
pullula 

173 GS|88.5|BOLD:ACM71
48 

p:Arthropo
da 

c:Insecta o:Coleoptera 
  

174 GS|87.0|BOLD:ACU289
0 

p:Arthropo
da 

c:Insecta o:Hymenoptera 
  

176 GS|100.0|BOLD:AAH02
56 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Latridiidae g:Corticarina s:Corticarina 
cavicollis 

177 GS|95.2|BOLD:AAF446
2 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Rhyparochromid
ae 

g:Megalonotus s:Megalonotus 
chiragra 

180 GS|75.0|BOLD:AAN905
2 

p:Arthropo
da 

c:Insecta o:Diptera 
   

187 GS|99.3|BOLD:AAG690
3 

p:Arthropo
da 

c:Insecta o:Diptera f:Heleomyzidae g:Trixoscelis s:Trixoscelis 
fumipennis 

189 GS|100.0|BOLD:AAH41
41 

p:Arthropo
da 

c:Insecta o:Diptera f:Chloropidae g:Neodiplotoxa 

191 GS|99.3|BOLD:AAC081
4 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Rhopalidae g:Stictopleurus s:Stictopleurus 
punctiventris 

193 GS|82.9|BOLD:ADC925
3 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Ceratagallia 

197 GS|99.6|BOLD:ADL342
7 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Delphacidae g:Javesella s:Javesella 
atrata 

198 GS|96.7|BOLD:ACY972
9 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Tenebrionidae g:Eleodes s:Eleodes 
vandykei 

203 GS|100.0|BOLD:AAG88
00 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Rhyparochromid
ae 

g:Trapezonotus s:Trapezonotus 
arenarius 
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204 GS|96.0|BOLD:AAG894
3 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Pentatomidae g:Chlorochroa s:Chlorochroa 
uhleri 

205 GS|100.0|BOLD:AAG72
75 

p:Arthropo
da 

c:Insecta o:Diptera f:Sphaeroceridae g:Pullimosina 

206 GS|96.3|BOLD:ACL508
4 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Steiroxys 

218 GSL|84.4|BOLD:AAB44
25 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Aeropedellus 

221 GS|96.0|BOLD:AAD772
1 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Arphia s:Arphia 
conspersa 

222 GS|97.9|BOLD:AAQ007
2 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Elateridae g:Selatosomus s:Selatosomus 
semimetallicus 

223 GS|96.3|BOLD:ACR750
1 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Carabidae g:Calosoma s:Calosoma 
wilkesii 

232 GS|81.6|BOLD:AAG618
6 

p:Arthropo
da 

c:Insecta o:Archaeognatha 
  

237 GS|70.6|BOLD:ADK043
6 

p:Arthropo
da 

c:Insecta o:Lepidoptera f:Geometridae g:Elophos s:Elophos 
caelibaria 

239 GS|96.7|BOLD:AAZ176
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Litomiris s:Litomiris 
curtus 

241 GS|100.0|BOLD:AAB81
43 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Nabidae g:Nabis s:Nabis 
americoferus 

252 GS|97.0|BOLD:AAG519
8 

p:Arthropo
da 

c:Insecta o:Coleoptera f:Curculionidae g:Otiorhynchus s:Otiorhynchus 
ovatus 

253 GS|99.7|BOLD:AAV406
3 

p:Arthropo
da 

c:Insecta o:Diptera f:Ephydridae g:Philygria s:Philygria 
punctatonervosa 

254 GS|95.3|BOLD:ACL508
4 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Steiroxys 
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259 GS|100.0|BOLD:AAJ29
23 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Labopidea s:Labopidea 
lenensis 

261 GS|100.0|BOLD:AAH42
27 

p:Arthropo
da 

c:Insecta o:Diptera f:Heleomyzidae 
 

265 GS|88.1|BOLD:AAC577
9 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Gomphoceripp
us 

s:Gomphoceripp
us rufus 

267 GS|97.3|BOLD:ABX392
5 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Auridius s:Auridius 
aurigineus 

268 GS|83.1|BOLD:AAC577
9 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Gomphoceripp
us 

s:Gomphoceripp
us rufus 

271 GS|90.7|BOLD:ACL508
8 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Steiroxys 

279 GS|96.3|BOLD:AAG066
6 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Gryllidae g:Gryllus s:Gryllus veletis 

288 GS|100.0|BOLD:AAA52
99 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae g:Cricotopus s:Cricotopus 
sylvestris 

291 GS|91.7|BOLD:AAA876
4 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Camnula s:Camnula 
pellucida 

293 GS|98.7|BOLD:AAG066
6 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Gryllidae g:Gryllus s:Gryllus veletis 

297 GS|99.3|BOLD:AAA530
8 

p:Arthropo
da 

c:Insecta o:Diptera f:Chironomidae g:Cricotopus 

300 GS|99.7|BOLD:AAG682
2 

p:Arthropo
da 

c:Insecta o:Diptera f:Muscidae g:Schoenomyza 

301 GS|97.7|BOLD:AAF446
2 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Rhyparochromid
ae 

g:Megalonotus s:Megalonotus 
chiragra 

304 GS|81.3|BOLD:ACC027
5 

p:Arthropo
da 

c:Insecta o:Diptera f:Mycetophilidae g:Cordyla 
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309 GS|99.7|BOLD:AAC436
9 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Pentatomidae g:Aelia s:Aelia 
americana 

315 GS|95.0|BOLD:AAA876
4 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Camnula s:Camnula 
pellucida 

320 GS|90.7|BOLD:AAC577
9 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Gomphoceripp
us 

s:Gomphoceripp
us rufus 

326 GS|93.3|BOLD:AAA827
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Scutelleridae g:Homaemus s:Homaemus 
aeneifrons 

341 GS|100.0|BOLD:ACC27
00 

p:Arthropo
da 

c:Insecta o:Diptera f:Phoridae g:Megaselia 

344 GS|99.4|BOLD:AAC611
6 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Scutelleridae g:Homaemus s:Homaemus 
bijugis 

352 GS|93.3|BOLD:ACL508
4 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Steiroxys 

354 GS|95.3|BOLD:AAC611
6 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Scutelleridae g:Homaemus s:Homaemus 
bijugis 

355 GS|99.7|BOLD:ABX396
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Cicadellidae g:Orocastus s:Orocastus 
tener 

379 GS|98.0|BOLD:ABZ140
5 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Lygus s:Lygus borealis 

381 GS|84.0|BOLD:ABY203
5 

p:Arthropo
da 

c:Arachnid
a 

o:Mesostigmata f:Parasitidae 
 

382 GS|99.7|BOLD:ACK634
8 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Pentatomidae g:Holcostethus s:Holcostethus 
limbolarius 

384 GS|90.0|BOLD:AAE394
3 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Miridae g:Plagiognathus s:Plagiognathus 
chrysanthemi 

388 GS|92.0|BOLD:AAC577
9 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Gomphoceripp
us 

s:Gomphoceripp
us rufus 
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391 GS|99.3|BOLD:AAC611
6 

p:Arthropo
da 

c:Insecta o:Hemiptera f:Scutelleridae g:Homaemus s:Homaemus 
bijugis 

396 GS|91.0|BOLD:ACA639
1 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Anabrus s:Anabrus 
simplex 

399 GS|80.7|BOLD:AAG618
6 

p:Arthropo
da 

c:Insecta o:Archaeognatha 
  

410 GS|96.7|BOLD:ACL508
4 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Tettigoniidae g:Steiroxys 

411 GS|85.8|BOLD:ABX276
2 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Stenobothrus s:Stenobothrus 
stigmaticus 

416 GS|99.3|BOLD:ACE582
3 

p:Arthropo
da 

c:Insecta o:Orthoptera f:Acrididae g:Chorthippus s:Chorthippus 
curtipennis 
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Appendix H. Ordination (nMDS) plot illustrating the similarities and differences in OTU 
composition across four spotted knapweed density categories (high, medium, low, and none) and 
across each month of sampling a) May, b) June, c) July, and d) August, n=56. 
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