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Abstract  

The discovery of new and more effective antibiotics continues to be a priority 

given the frequency of the emerging multi-drug resistant pathogenic microorganisms. 

Thus, scientists are searching for new antibiotics from microorganisms selected from 

extreme habitats such as very old caves. Various cave bacteria species were isolated and 

could be sources of new antibiotics.  The objective of our work is to isolate cave bacteria 

from a volcanic cave in Wells Gray Provincial Park in BC and to test if they produce 

metabolites with antimicrobial activity against some microorganisms including multi-

drug resistant pathogens. This study used 16 cave strains previously isolated and screened 

against a panel of microorganisms including drug resistant pathogens.  Upon retesting, 4 

out of 16 cave bacterial isolates, RA001, RA003, RA004, and PM58B-RA, demonstrated 

antimicrobial activity against Mycobacterium smegmatis, Micrococcus luteus, 

Acinetobacter baumannii and MDR-Staphylococcus aureus.  To study the conditions for 

best growth and antimicrobial production, these four bacteria were cultured in different 

fermentation media (namely Hickey-Tresner, R2A, V-8 juice and ISP-2) and incubated at 

12 and 25°C for 14 days.  During the course of fermentation, the percentage of packed 

cell volume (%PCV), antimicrobial activity and pH were observed and recorded daily.  It 

was found that each of the bacteria demonstrated antimicrobial activity against different 

microorganisms at various times of fermentation and temperature.  Overall, R2A broth 



2	  
	  

medium and the lower temperature of 12°C appear to be best for antimicrobial production 

by the cave bacteria used in this study.  Isolation and purification of the antimicrobial 

compounds produced by these isolates is under investigation using the best growth 

conditions determined in this study. We identified these bacteria using chemotaxonomic 

studies; 16S rRNA sequencing and Matrix-assisted laser desorption/ionization-time of 

flight (MALDI-TOF), all isolates were identified to the species level.  PM58B was found 

to be Bacillus licheniformis, RA001, and RA004 were identified as Arthrobacter agilis 

that may be of different variants. While RA003 was identified as Sphingopyxis terrae.  

Active compounds from RA003 fermentation broth were further studied by extraction 

and purification.   

In conclusion, cave bacteria are promising sources of potential novel 

antimicrobial compounds.  Isolation, optimization of screening, growth media and 

conditions of cave bacteria may be useful in the discovery of new antimicrobial drugs.  

Additionally, the knowledge obtained from this study with respect to cave bacteria and 

their roles in cave formation and degradation will add to existing information on cave 

conservation. 
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1 Introduction 
1.1 Summary 
 

 The objective of this study was to isolate bacteria from a volcanic cave in Wells 

Gray Provincial Park in BC, and investigate whether these bacteria can produce 

metabolites with antimicrobial activity against various tested microorganisms including 

pathogens and non-pathogens. Previous studies demonstrated that a diverse community 

of microorganisms inhabiting the Helmcken Falls Cave could inhibit various tested 

microorganisms and indicated that some of these microorganisms have the ability to 

produce antimicrobial agents; Rule and Cheeptham, 2013; Cheeptham et al., 2013). The 

present study confirms that a wide variety of microorganisms inhabiting the Helmcken 

Falls Cave possess antimicrobial activities that can inhibit the growth of some tested 

bacteria. 

Sixteen cave bacterial isolates were examined using the disc-diffusion (Kirby-

Bauer) method against the tested microorganisms such as Mycobacterium smegmatis, 

Micrococcus luteus, multi-drug resistant Staphylococcus aureus (MDR-MRSA), 

Acinetobacter baumannii, ESBL E. coli and Candida albicans. In total, four isolates 

demonstrated effective antimicrobial activity, as they had the ability to kill and inhibit the 

growth of tested microorganisms such as Gram-positive and/or negative-bacteria. 

Interestingly, one of the isolates (RA003) displayed antimicrobial activity against MDR-

MRSA.  

This study also demonstrated that the media selection was critical in the 

antimicrobial activity of the isolates. R2A broth was the optimal medium for the 

antimicrobial activity of all four isolates selected for further study. Production of 

antimicrobial activity was not observed for some isolates in some of the media tested, and 

some of the isolates displayed varying levels and/or loss of antimicrobial activity during 

the fermentation course when cultured in various media. Notably, the RA001, RA004 and 

PM58B-RA isolates lost their antimicrobial activity on specific days of culture and then 

antimicrobial activity reappeared on subsequent days of culture.  These observations were 
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consistent with repeating experiments.  The reasons are not clear as to why they lost their 

activity, these need to be further studied.  Additionally, the characteristics of secondary 

metabolites are not completely understood at this time, their chemical structures need to 

be further studied.  One plausible explanation may be due to their functions, the 

antimicrobial activity of secondary metabolites in the laboratory may not reflect their role 

in nature (Bibb, 2005). 

Temperature, pH, fermentation period, seed inoculum volume and the type of 

media all had effects on the antimicrobial activity, growth and production of pigments by 

the four isolates. In general, when inoculated using a 2% seed culture, cultured at 12 or 

25°C and pH 7.8-8.5 with shaking at 250 rpm over 14 days, the optimum fermentation 

period for antimicrobial activity was between days 3-11 for all four isolates. Production 

of pigments by the isolates was also affected by various physical factors: culture media, 

fermentation period and temperature; previous studies have shown that a variety of 

factors can affect bacterial pigmentation(Reasoner and Geldreich, 1985) (Reasoner and 

Geldreich, 1984; Goswami, 2010). 

All in all, this study has confirmed using a combination of techniques; we were 

able to reliably identify with 16S rRNA sequencing, three isolates identified to the 

species level and one isolate to the genus level matching with 99% similarity were 

identified on the basis of 16S rRNA gene sequencing, enabling identification of the 

PM58B-RA, RA001 and RA004 isolates to the species level. MALDI-TOF MS 

confirmed the results of the 16S rRNA gene sequencing; however, MALDI-TOF MS also 

identified the RA003 isolate to the species level.  

In conclusion, four isolates with antimicrobial activity isolated from the 

Helmcken Falls Cave were studied and identified, and the effect of different fermentation 

conditions on the antimicrobial activity of the isolates was investigated. In the future, a 

variety of temperatures such as 7°C, 12°C, 15°C, 25°C and 30°C should be tested in 

order to optimize the antimicrobial activity of each isolate, as 12°C and 25°C may not be 

close to the optimal temperatures for each isolate. Additionally, further research is 

required to purify and identify chemical structures of the antimicrobial secondary 

metabolites, and investigate the mechanisms underlying the effects of different 
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fermentation conditions on the production of antimicrobial secondary metabolites by 

these isolates. It will also be important to determine the mode of action study of these 

antimicrobial compounds and investigate their antimicrobial activities against different 

tested microorganisms using in vitro assays.  
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1.2 The Objectives of This Research 
 

1-‐ To isolate and screen cave bacteria to determine if they produce metabolites with 

antimicrobial activity against the pathogenic microorganisms Micrococcus luteus, 

MDR-MRSA, Acinetobacter baumanni, Mycobacterium smegmatis, Candida 

albicans, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. 	  

2- To partially purify the secondary metabolites produced by the cave isolates to study 

their   structure. 
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1.3 Literature Review  
 

 

1.3.1 Antibiotics  
	  

Antimicrobial agents are “chemical substances that kill or inhibit the growth of 

microorganisms” (Cushnie and Lamb, 2005), and the term includes antibacterial, 

antifungal, antiparasitic and antiviral compounds (Kujumgiev et al., 1999). Professor 

Selman A. Waksman first defined antibiotics in the 1940s as “chemical substances of 

microbial origin that possess antibiotic capacity”. In general, antibiotics are substances 

derived from plants, animals or microbes that can inhibit bacterial growth (Kannel et al., 

1971; Strohl, 1997; Davies, 2006).  

 

There are three classifications of antibacterial agents: natural, semi-synthetic and 

synthetic. Natural antibiotics are antibiotics originally derived from microorganisms, 

fungi, plants or animals (Topliss et al., 2002); microorganisms may develop resistance to 

natural antimicrobials more rapidly as they have been pre-exposed to these compounds in 

nature. Semi-synthetic drugs are natural compounds that have been chemically altered to 

reduce their toxicity and increase their effectiveness. Synthetic drugs may be 

advantageous as bacteria have not previously been exposed to these compounds (Topliss 

et al., 2002). However, on the other hand, natural antibiotics and semi-synthetic drugs are 

less effective than synthetic antibiotics (Topliss et al., 2002). 
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Figure 1: General structure of penicillin (Baldo, 1999) 

 

 

Penicillin and tyrothricin were the first antibiotics used to kill gram-positive 

bacteria (Figure 1; Spector et al., 2012; Brozak, 2013). During the 1940s, Selman 

Waksman first isolated the antibiotic streptomycin, which is an inhibitor of several gram-

negative and -positive bacteria and provided the first effective treatment for tuberculosis 

(Davies, 2010). Most modern antibiotics were discovered between 1945 and 1960, a 

period regarded as "The Golden Era of Antibiotic Discovery"; a wide range of antibiotics 

effective against a variety of pathogens including gram-positive and gram-negative 

bacteria were identified during this time (Spector et al., 2012). 

 

1.3.2 Mechanism of Action of Antibiotics 
 

Different antibiotics have varying mechanisms of action and target sites within 

bacterial cells, based on their structure. The major targets of common antibiotics are 

proteins related to DNA synthesis, protein synthesis, cell wall synthesis, nucleic acid 

synthesis and other metabolic processes (Bauer and Dicks, 2005). For example, 
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penicllins, cephalosporins and vancomycin inhibit bacterial cell wall synthesis, and these 

antibiotics do not affect human and animals cells as they do not have cell walls.  

 

1.3.3 Antibiotic Resistance 
 

1.3.3.1 The Appearance of Antibiotic Resistance 
 

Antibiotic resistance is a significant threat to human health, as it counteracts the 

beneficial effects of the antibiotic compound targeting the pathogen (Cushnie and Lamb, 

2005), often resulting in treatment failure, which can cause severe health consequences 

and may lead to death (Tenover, 2006). Resistance both pathogenic and non-pathogenic 

microorganisms can develop rapidly following the deployment of a new antibiotic 

(Figure 2).  

 

 

 

	  
Figure 2: Timeline showing the discovery of antibiotics and the first appearance of 
resistance (Clatworthy et al., 2007). 

 

 

 

More than 70 years ago, the antibiotic era started with sulfonamide (Figure 2), 
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and scientists identified bacterial resistance to sulfonamide in the 1940s (Fleming, 1945). 

Resistance to almost every available antibiotic has been observed in both Gram-negative 

and Gram-positive bacteria (Ash 2002; Rice, 2006; Baquero et al., 2008;). Today, the 

growing emergence of antibiotic-resistant bacterial strains makes antibiotics ineffective 

for the treatment of infectious diseases. The Infectious Disease Society of America 

reported that approximately 70% of hospital-acquired infections in the United States are 

resistant to one or more antibiotic (Chadwick et al., 1996; Davies, 2010). 

 

The continual discovery of resistance against novel antimicrobial agents is not 

unexpected, as antibiotics and other related organic molecules are similar to other natural 

products. Nevertheless, bacterial resistance is a particular problem in healthcare settings, 

and the appearance of novel resistance genes in the clinic is alarming as it necessitates the 

controlled use of antibiotics (Levy, 2002). 

 

 

1.3.3.2 Major Species of Antibiotic-Resistant Bacteria  
 

The increasing prevalence of multidrug-resistant (MDR) strains, such as 

methicillin-resistant Staphylococcus aureus (MRSA), MDR Acinetobacter baumannii, 

and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, 

Mycobacterium tuberculosis, Klebsiella pneumoniae, Salmonella spp. and P. aeruginosa, 

is a serious risk to human health. Such pathogens are resistant to most available 

antibiotics, reducing the number of curative options and making treatment of these 

infections more expensive (Conly, 2002; Dapkevicius, 2013). 

 

Acinetobacter species are common nosocomial Gram-negative pathogens, which 

cause blood stream infections, secondary meningitis and urinary tract infections (Camp et 

al., 2010). Three Acinetobacter species cause disease; however, 80% of these infections 

are associated with A. baumannii (Camp et al., 2010). Approximately 12,000 healthcare-

associated Acinetobacter infections occur in the United States every year (Camp et al., 

2010). MDR Acinetobacter strains are frequently resistant to penicillin, ampicillin, 
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aminoglycosides, erythromycin, cephalosporins, chloramphenicol, norfloxacin, 

streptomycin and tetracycline (Camp et al., 2010).  

 

MRSA is a Gram-positive bacterium and a major cause of nosocomial and 

society-acquired infections (Matsui et al., 2011). MRSA causes bloodstream infections, 

pneumonia and surgical-site infections, and is resistant to methicillin and other penicillin-

class agents (Pray et al., 2008; Russo and Johnson, 2003). In 2004, the Centers for 

Disease Control reported that 63% of Staphylococcus infections were due to MRSA 

(Camp et al., 2010).  

 

Even though the Gram-negative bacterium E. coli is a component of the normal 

human and animal intestinal flora (Tadesse et al., 2012), it is the second-most common 

cause of human infections after S. aureus (Russo & Johnson, 2003). E. coli causes 

intestinal, extra-intestinal and urinary tract infections; such infections kill around 7200 

people in the United States each year (Russo & Johnson, 2003). Furthermore, E. coli 

causes diarrhea, which kills about 1 million people each year worldwide; most of these 

cases are children and immuno-compromised individuals (Russo & Johnson, 2003). 

Tadesse et al., (2012) studied the evolution of drug resistance in E. coli strains from the 

1950s through to 2002 and found resistance to ampicillin, sulfonamide and tetracycline. 

Another recent study by Olson et al. (2009) reported that E. coli is resistant to a 

sulfonamide used to treat urinary tract infections.  

 

 

1.3.3.3 Genetics of Antibiotic Resistance  
	  

Antibiotic resistance genes acquired via horizontal gene transfer between bacteria 

are responsible for the phenomenon of resistance (Levy, 2002; Davies, 2010). Antibiotic 

exposure provides a pressure that selects for bacteria possessing resistance genes. 

Resistance develops as a result of two factors: the antibiotic itself and the resistance gene. 

The antibiotic acts as a selective agent that helps to select for organisms possessing the 

resistance gene; both of these factors are required for resistance to develop.  
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Scientists have conducted functional studies of bacteria isolated from different 

environments to identify the sources of antibiotic-resistance genes (White, 2013; Bhullar, 

2011). Bacterial DNA was collected from different environments such as soil, processed 

sewage and the human intestine, and antibiotic-resistance genes were found in each 

environment tested (White, 2013). In 2012, Forsberg and colleagues described natural 

environments as reservoirs of antibiotic-resistance genes that enable the genes to be 

transferred between soil bacteria and clinical pathogens. Additionally, seven resistance 

genes found in soil microbes were highly similar to the resistance genes found in clinical 

isolates of human pathogens. 

 

Bhullar (2011) investigated microbes isolated from the Lechuguilla cave, New 

Mexico. The microorganisms inhabiting this ‘isolated cave’ are unlikely to have had 

contact with surface water or influences for 4-6 million years, and even today, human 

access to this cave is extremely limited. The authors reported that genetic diversity was a 

critical measure of resistance in the cave isolates. For example, some of the bacteria were 

highly resistant to different commercially available antibiotics, which the cave bacteria 

are extremely unlikely to have encountered in their natural environment. Together, these 

studies support the suggestion that antibiotic resistance is a naturally occurring process 

which is encoded for by ancient microbial genes (Hughes and Datta, 1983; Barlow and 

Hall, 2002; Bhullar, 2011). 

 

Numerous recent studies have indicated that resistance genes arise due to the 

frequent use of antibiotics (Levy, 2002; Davies, 2010; Bhullar, 2011). However, other 

studies suggest that some resistance genes existed before humans used antibiotics to treat 

diseases (White 2013). Several studies of antibiotic-resistance genes have reported that 

decreasing the use of antibiotics will help alleviate the problem of resistance (White 

2013). Furthermore, using an alternative approaches such as antimicrobial vaccines or 

bacteriophages may help to decrease the spread of drug resistance and provide a tool for 

combating highly resistant infections (Dantas et al., 2008).  
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1.3.3.4 Mechanisms Contributing to the Evolution of Antibiotic Resistance 
	  

 Microorganisms use various mechanisms to protect themselves from other 

organisms. Bacteria can transfer the genes responsible for antibiotic resistance into other 

bacteria via plasmids. A single plasmid can carry genes conferring resistance to multiple 

antibiotics (Bennett, 2008). A. baumannii expresses a single enzyme, β-lactamase, that 

confers resistance to penicillins, cephalosporins and carbapenems (Levy, 2002). A. 

baumannii can also acquire other genes, such as acetyltransferases, phosphotransferases 

and nucleotidyltransferases, which confer resistance to fluoroquinolones and 

aminoglycosides (Levy, 2002). Extra-chromosomal elements such as plasmids can 

transfer genes between bacteria, and resistance genes can be transferred between Gram-

positive and Gram-negative bacteria (Levy, 2002). Other mechanisms, such as 

bacteriophages and naked-DNA mechanisms, also contribute to the evolution of 

resistance by moving resistance genes between different bacterial species and 

populations; however, these mechanisms do not function in all types of bacteria (Levy, 

2002). 

 

 

1.3.3.5 The Impact of Human Activities on the Evolution of Drug Resistance 
	  

The increasing prevalence of antimicrobial resistance is the result of bacteria 

evolving over time in response to natural and societal pressures that constrain their ability 

to grow and disperse (Spellberg, 2012). The role played by human activities is a central 

issue in antibiotic resistance. Antibiotic resistance began to spread soon after humans 

started using antibiotics widely in medicine and agriculture. The misuse of drugs to 

promote human and animal health and increase food production has accelerated the 

evolution of antimicrobial resistance (Bhullar, 2011). In addition, the same antibiotics 

have been used to treat humans as well as animals and agricultural crops, which may 

have contributed to the high levels of resistance observed today (Bhullar, 2011).  
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The frequent release of antibiotics into bodies of water and wastewater is also 

believed to contribute to the spread of antibiotic-resistance genes (Baquero et al., 2008). 

For example, an increase in the use of avoparcin, a glycopeptide used as a growth 

promoter in poultry farms, was found to lead to the spread of vancomycin-resistant 

Enterococci in the intestinal flora of poultry animals. When the use avoparcinuse was 

reduced, glycopeptide resistance diminished in the animal flora (Bhullar, 2011). There 

are similar examples of human activity contributing to resistance to tylosin, 

virginiamycin and other antibiotics (Bhullar, 2011). It is important to educate people by 

arranging workshops and training, especially farmers and workers, about community 

safety to reduce antibiotic resistance in human and agricultural populations. Education 

may be the most effective means to reduce the transmission of antibiotic-resistant 

organisms within communities (Bhullar, 2011). 

 

Additionally, antibiotic-resistant organisms can spread within healthcare 

communities. For example, MRSA has become a widespread problem in healthcare 

facilities and hospitals around the world. Antibiotic-resistant bacteria can spread via the 

transfer of patients between hospitals or more widely via medical tourism. In addition, 

40, 25, and 10% of patients receiving antibiotic treatments carried two or more, three or 

more, and four or more drug resistant-bacteria, respectively, in 10% of their E. coli 

(Bhullar, 2011). Additionally, the discovery of resistance in commensal strains may 

indicate future problems with resistance to an agent in clinical pathogens in that hospital 

or community (Levy, 2002). 

 

 

1.3.4 The Need for New Antibiotic Agents 
	  

Drug discovery must focus on finding novel structures, mechanism and targets to 

inhibit bacterial growth (Strohl, 1997; Brozak, 2013). There are a number of reasons 

driving scientists to discover and develop new antibiotics with novel structures and 

activities (Strohl, 1997). New infectious diseases that were previously unknown to 
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scientists have emerged. Additionally, some crucial antibiotics such as gentamicin and 

other aminoglycosides have high toxicities that constrain their effectiveness (Strohl, 

1997). However, the increase in the spread of antibiotic-resistant bacteria, particularly 

MDR pathogens, has become one of the most serious problems in healthcare (Wright, 

2007; Davies, 2010; Cheeptham, 2013; Strohl, 1997) and is the major reason driving the 

search for new antibiotics.  

 

Between 1983 to 1987, 16 new antibiotics were approved for use in humans. In 

contrast, only two new antibiotics were approved between 2008 and 2012 (Spellberg, 

2012). Fluoroquinolones, a class of drugs discovered 40 years ago and used to treat 

Gram-negative bacilli infections, were the last new class of antibiotics to be discovered 

(Spellberg, 2012). Hence, due to the lack of novel antibiotic agents, the prevalence of 

antibiotic resistance among Gram-negative bacteria is increasing (Pallett and Hand, 2010; 

Spellberg, 2012).	  

 

Strohl (1997) stated that the continued development of new antibiotics over the 

next decade is required to enter a “new era of antibiotics”; otherwise, antibiotics may 

become increasingly ineffective against drug-resistant pathogens. Dr. Margaret Chan, the 

head of the World Health Organization, declared that the world faces a post-antibiotic era 

in which infectious diseases will be increasingly difficult to treat using antibiotics 

(Brozak, 2013). Dr. Keiji Fukuda (2013), the Assistant Director General of the World 

Health Organization, declared that the rapid emergence of antibiotic resistance is a global 

risk to human health. Therefore, researchers, companies and governments must help to 

develop new methods for drug discovery in order to provide novel, more effective 

antibiotics. Otherwise, we may become unable to treat a number of pathogenic 

microorganism infections. For example, novel antibiotics with new mode of action need 

to be developed to enable effective combination therapy against MRSA. 

 

New sources of microorganisms must be found to increase the chances of 

discovering and developing new antibiotics. Natural resources are a major source of 

drugs. Over half of the drugs used today were discovered as natural products in plants, 
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animals, the oceans, caves or soil (Ji et al., 2009). It is important to search for new 

sources of drugs in extreme environments to broaden our chances of finding novel 

antimicrobial agents (Strohl, 1997).  

 

For example, Mars could be a potential source of pharmacologically active agents 

(Gabriel and Northup, 2013). Microbiologists have hypothesized about the existence of 

cave-dwelling microorganisms on Mars and the potential of such organisms to be a new 

source of secondary metabolites with useful properties (Boston et al., 2001; Leveille and 

Datta, 2010). Mars is an extreme environment with a strong surface radiation, making life 

on the surface of Mars impossible. Some of the conditions on Mars are similar to those 

on Earth, such as warm temperatures and the presence of water (Baker et al., 1991; Beaty 

et al., 2005). Cushing et al. (2007) and Deak (2010) presented high-quality pictures of 

lava-tube caves beneath the surface of Mars, and Boston et al. (2006) reported that the 

Martian lava tubes might be much larger than those on Earth because of the lower gravity 

on Mars. One day, looking for microorganisms in the Martian lava-tube caves may lead 

to the discovery of new antibiotics.  

 

 

1.3.5 The Cave Habitat as a Source of Novel Antibiotic-Producing Bacteria 
	  

Caves are unique in nature, unexploited, and poorly studied (Cheeptham, 2013; 

Gabriel and Northup, 2013). Caves are extreme environments in which highly specialized 

microorganisms grow, making them attractive places to look for new microorganisms 

that could produce novel bioactive compounds. Several novel organisms have been found 

in caves (Gabriel & Northup, 2013; see Table 1). Lee et al. (2000) identified two new 

species belonging to the genus Saccharothrix, Saccharothrixviolacea sp. nov. and 

Saccharothrixalbidocapillata comb. nov., in soil samples collected from a gold mine in 

Korea. Lee (2006) also studied the biodiversity of cave bacteria in a natural cave in Korea 

and discovered a novel actinomycete, Nocardiajejuensis sp. Cheng et al. (2013) isolated 

the novel species Microlunatuscavernae sp. nov. from an ancient cave in China. 

Margesin et al. (2004) discovered a new species belonging to the genus Arthrobacter, 
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Arthrobacter psychrophenolicus sp. nov., in an alpine ice cave. These microorganisms 

were distributed among a wide variety of caves (Table 1). 
 

Table 1: Examples of microorganisms found in various caves (adapted from Cheeptham, 2013) 

Cave location Microorganisms found 

Altamira and Tito Bustillo, northern 

Spain 

Streptomyces sp. 

(predominant), Nocardia sp., Rhodococcus, 

Nocardioides and Amycolatopsis. 

Cesspool caves, Virginia, USA 

 

Genus Thiothrix, the flxibacter- Cytophaga-

Bacteriodes phylum and possibly Helicobacter 

or the Thiovulum group for some remaining 

strains 

Basalticsea caves, Kauai Hawaii, 

USA 

Bacteria and cyanobacteria 

 

Various Japanese caves (20 limestone 

and volcanic caves) 

 

Members of Trichosporon species,  

Candida palmioleophila, Clusitaniae, 

Debaryomyceshansenii and Hanseniaspora spp.  

Basaltic Lava caves in Azores 

(Portugal), Hawaii and NewMexico 

(USA) 

Bacteroidetes, Chloroflexi, Nitrospirae and 

Verrucomicrobia 

Buracos cave (Lava tube), Terceira 

island (Azores), Portugal 

Mainly Proteobacteria and Actinobacteria; 

Gallionella sp. and Leptothrix sp. were observed 

by SEM but not using other techniques 

 

 

 Actinomycetes are one of the most common bacteria that produce secondary 

metabolites. For example, the genus Streptomyces, which was isolated from a volcanic 

cave, has a high yield of secondary metabolites (Kay et al., 2013; Cheeptham, 2013). 

Therefore, is therefore necessary to discover more about the microorganisms and 
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environmental conditions inside caves.  

 

1.3.5.1 Effect of the Cave Habitat on Microorganisms and Antibiotic Production 
	  

The environmental conditions inside caves include various factors that could 

influence microbial communities (Cheeptham, 2013). The factors influencing cave 

conditions include light, temperature, energy and nutrient availability. Caves are harsh 

environments, deficient in light and nutrients (Dapkevicius, 2013). Previous studies of 

volcanic environments revealed that the lack of sunlight in caves forced some common 

bacteria to adapt (Northup et al., 2011; Cheeptham, 2013).  

 

The ability of different microbes to grow in caves suggests that caves may be 

ideal environments that provide diverse habitats for microbes. However, it is not known 

how organisms obtain energy in caves, where energy sources are often rare. 

Heterotrophic bacteria have a variety of mechanisms to obtain organic carbon (Barton 

and Jurado, 2007). For example, running streams and rivers may bring organic carbon in 

the form of plant material into caves from the surface. In addition, airflow can carry 

various carbon sources into caves. Animals and humans can also bring organic carbon 

into caves (Gabriel and Northup, 2013); such visitors may induce the production of 

antimicrobial agents in caves (Montano and Henderson, 2013). 

 

Chemolithoautotrophs are bacteria that obtain energy by oxidizing inorganic 

compounds such as ammonia, iron, nitrogen, hydrogen and hydrogen sulfide (Gabriel and 

Northup, 2013). Chemolithoautotrophs inhabit caves, such as the arid-land caves in New 

Mexico, where microbes obtain energy from reduced gases that pass through springs 

(Gabriel and Northup, 2013). While energy is essential for the production of bacterial 

metabolites, inorganic compounds such as nitrogen, iron, sulfur and carbon dioxide also 

play an important role in the production of bacterial metabolites (Northup at el., 2011).  

 

Temperature, humidity, and light are also important factors determining bacterial 

diversity in cave systems. Temperature and humidity vary more inside lava caves than 
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outside the cave (Cropley, 1965). Northup et al. (2011) studied the microbial 

communities in three lava-tube caves that differed significantly in temperature (14-19°C 

in Hawaii, 15-16°C in the Azores and -2 to 9°C in New Mexico) and humidity. Despite 

the diversity of conditions between these caves, there were similarities in the bacterial 

species compositions at the phylum level, as indicated by a combination of SEM and 

molecular methods (DNA extraction, PCR, 16S rRNA sequencing and phylogenetic 

analysis; Northup et al., 2011). 

 

Gabriel and Northup (2013) reported that the low temperatures in some lava caves 

could cause microorganisms to produce secondary metabolites related to cold resistance, 

although they did not specifically examine the influence of temperature on the production 

of secondary metabolites. Cheeptham et al. (2013) investigated antimicrobial activity in 

actinomycetes isolated from a cold volcanic cave (7.5-12.2°C) in British Columbia, 

Canada, and found that the cave bacteria had the ability to produce secondary metabolites 

that possessed anti-microbial activity against pathogens. Their results also suggested that 

the same species of cave bacteria can be found in caves with different conditions and in 

different locations (Cheeptham et al., 2013). 

 

Surface microbes have developed mechanisms to defend themselves against the 

damaging effects of UV radiation (Walter, 1983; Yasui and McCready, 1998). Cave 

bacteria, which exist mostly in the dark, have adapted to low-light conditions. Gabriel 

and Northup (2013) hypothesized that there is correlation between such adaption and the 

depth of the cave: bacteria in deeper caves are more adapted to low-light conditions 

(Gabriel and Northup, 2013). In contrast, Snider et al. (2009) hypothesized that the lack 

of light does not affect the adaptation of microbes living in caves (Snider et al., 2009). In 

addition, Cheeptham and Rule (2013) studied the effects of UV light on the antimicrobial 

activities of cave-dwelling actinomycetes, and found that UV light influenced the 

antimicrobial activity of the cave actinomycetes, suggesting that UV light exposure could 

potentially be used as a new screening strategy for antibiotic discovery (Cheeptham and 

Rule, 2013). 

 



26	  
	  

 

1.3.6 Techniques Used to Analyze and Identify Cave Bacteria 
	  

 Various techniques have been used to identify cave isolates. It is important to 

determine if the isolates have been previously identified and to evaluate their production 

of new or previously identified antibiotic compounds. In previous studies, various soil 

isolates were phenotypically and genotypically characterized (Fakruddin and Mannan, 

2013).  

 

 A number of studies have suggested that microbial diversity and species 

composition differ significantly between limestone caves and lava tubes (Cheeptham, 

2013). An enormous number of techniques have been used to analyze the 

microorganisms which inhabit these two types of caves, including molecular methods and 

cultivation-independent methods. Limited data exists regarding mineral-microorganism 

interactions in caves, and community composition analyses have primarily been based on 

culture techniques (Aman et al., 1995; Hugenholtz et al., 1998). 

 

 Groth et al. (1999) and Laiz et al. (2003) found that a wide diversity of 

microorganisms inhabit Karstic caves using culture methods. However, these studies used 

different media and aerobic Petri films for isolation, while the first group also applied 

morphological, and physiological, techniques for identification.  

 

 Molecular methods are now considered standard analyses for identifying 

organisms (Fakruddin and Mannan, 2013; Sacchi, 2002). For example, 16S rRNA gene 

sequences have been widely used to determine bacterial phylogenies and identify 

unknown isolates at the genus and species levels (Sacchi, 2002). Recently, Northup et al. 

(2011) identified various phyla of bacteria (Chloroflexi, Nitrospirae, Verrucomicrobia, 

etc.; see Table 1) in three diverse lava-tube caves using a combination of scanning 

electron microscopy (SEM) and molecular techniques (DNA extraction, PCR, 16S rRNA 

sequencing and phylogenetic analysis). Despite some problems and drawbacks such as 

high cost and technical considerations, 16S rRNA gene sequencing has several 
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advantages for microbial identification, as it is accurate, objective and comprehensive, 

and the 16S rDNA gene is present in all bacteria and does not contain extensive 

mutations. Analysis of the nucleotide sequences of bacterial 16S rRNA genes allows the 

determination of phylogenetic relationships that could not be obtained by phenotypic 

methods (Clarridge, 2004; Song et al., 2005). However, none of these approaches are 

100% accurate for the identification of bacteria (Clarridge, 2004).  

 

 In general, methods for studying bacterial metabolism vary. Bacterial metabolism 

can be studied through different processes, including isolation, purification, optimization 

of conditions, screening for antimicrobial activity, and identification of unknown 

organisms (Ripa et al., 2009; Bhullar, 2011; Rule, 2013; Ababutain et al., 2013; 

Lueschow et al., 2013). We studied cave bacteria using traditional methods and a 

combination of other techniques including culture-based techniques for isolation, liquid 

enrichment for optimization, and morphological, chemotaxonomic, molecular (16S rRNA 

sequencing) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) 

techniques for identification (see Chapter 2 for further details of these techniques) (Kay 

et al., 2013; Cheeptham, 2013).  

 

 Recently, MALDI-TOF has used to identify unknown bacteria at the species level 

by characterizing the components of cellular proteins (Sacchi, 2002). Peptide spectra 

produced by MALDI-TOF were used to identify Arcanobacterium and Trueperella 

isolates collected from pigs and cows (Hijazin et al., 2012). MALDI-TOF has several 

clear advantages: it is fast, accurate and a large database of bacterial reference spectra is 

available (Sacchi, 2002). However, MALDI-TOF has some disadvantages. One important 

requirement for MALDI-TOF is that the bacterial cultures have to be pure. The resolving 

power of MALDI-TOF is lower than 16s r RNA analysis, and the technique is based on a 

chemical testing method which is not always 100% accurate for the identification of 

bacterial species. 

 

 It is important to use a combination of complementary techniques to study 

microbial communities in different environments (Fakruddin and Mannan, 2013). The 
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advantage of a combined strategy is that it increases our knowledge and ability to study 

bacteria that are difficult to culture (Fakruddin and Mannan, 2013), and such an approach 

may help to avoid rediscovering antibiotics and increase the chances of discovering novel 

organisms and/or antibiotics. By using a combination of techniques, Gurtner et al. (2000) 

reduced the instances of finding common organisms, in confirmation of the importance of 

using a combination of methods to study bacterial communities (Cheeptham, 2013). 

Using molecular techniques in combination with MALDI-TOF may help confirm 

bacterial identities. It is very important to confirm bacterial taxonomies using different 

techniques and strategies to determine if the target bacteria have been previously 

identified.  

 

 

1.3.7 Approaches for Screening Bacteria for the Production of Novel Antimicrobial 
Agents  
	  

 With the widespread increase in antibiotic resistance, there is an urgent need for 

rapid methods to determine antibiotic resistance and metabolite production in novel 

microorganisms. Scientists and laboratories in the United States, Japan, Britain and 

Russia have developed screening procedures to identify new compounds based on the 

ability of microorganisms to produce secondary metabolites that can inhibit the growth of 

microbes (Porter, 1997). Such screening methods are considered a traditional approach 

for antibiotic discovery and are still in widespread use today (Guo et al., 2013).  

 

 Agar dilution and disc diffusion are a primary method of screening for selected 

antimicrobial agents (Holasva et al., 2004). An inhibition zone around a disc on an agar 

plate indicates a positive result (see Chapter 2 for further details of these techniques). 

Valgaerts et al., (2007) reported the advantages of the disc-diffusion method, including 

its simplicity, low cost, absence of the need for specialist equipment and high flexibility, 

including the ability to test newly-available drugs. The effectiveness of the disc-diffusion 

method for identifying antimicrobial activities was supported by the results of Holasva et 

al. (2004), who used the disc-diffusion method as the primary method of screening the 
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antimicrobial activity of 16 cave isolates, and found that the method was an easy way of 

observing the inhibition zone produced by cave bacteria against microorganisms and 

against each other. The disc-diffusion method can also be used to qualitatively assess 

drug susceptibility and resistance (Valgaerts et al., 2007). These characteristics make the 

disc-diffusion method a good technique for preliminary screening of the antimicrobial 

activity of environmental isolates (Reller et al., 2009). However, Valgaerts et al. (2007) 

reported that the disc-diffusion method has several disadvantages, including long assay 

times and high cost, although the method does produce clear inhibition zones. 

  

 

1.3.8 Study of Culture Conditions for Cave Bacteria 
	  

Many studies have attempted to optimize antimicrobial production by 

microorganisms (Bajpai and Reuss, 1981), and the effects of media components on 

different traits such as cell growth, cellulose production, and the production of 

metabolites and antimicrobial compounds by cave isolates have been studied (Judaibi, 

2011; Dayal et al., 2013). Optimizing the media and fermentation conditions will increase 

the production of antimicrobial compounds by bacteria. The production of antimicrobial 

compounds can be influenced by the nature and concentration of the carbon, nitrogen and 

phosphorus sources (Yegneswaran et al., 1988). In general, the nutrient sources, which 

include carbon, nitrogen, ammonia, phosphate can inhibit or enhance antibiotic 

production by microorganism in culture media (Omura et al., 1986).  

 

In general, optimizing the culture media is a challenging process by which 

researchers try to create an ideal environment for microbial communities. In particular, 

bacteria isolated from cave habitats are adapted to environments that contain limited 

nutrients and organic compounds, and therefore optimization can be challenging. 

Development of an optimized medium is important for growing cave-adapted 

microorganisms, which generally grow very slowly (Pankratov et al., 2008).  
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1.3.8.1 Carbon sources 
	  

Gram-negative and Gram-positive bacteria need carbon for energy and structural 

components (Sánchez et al., 2010); however, the carbon source used in bacterial 

fermentation is very important for the production of antimicrobial compounds. Different 

carbon sources such as glucose have different effects on the production of antimicrobial 

compounds by bacteria (Sánchez et al., 2010). For example, using glucose as a carbon 

source had a positive effect on phenazine production by Pseudomonas chloraphis, 

whereas fructose, sucrose and ribose had a negative effect (Rij et al., 2004), and E. coli 

exhibited strong antimicrobial activity when grown on medium containing fructose and 

yeast extract (Vijavakumar et al., 2012).  

 

Gram-positive bacteria have the ability to produce drugs through ribosomal and 

non-ribosomal mechanisms (Sánchez et al., 2010). Gram-positive cell walls have 

multiple layers of peptidoglycan, protein and teichoic acid. Nevertheless, Gram-positive 

bacteria respond differently to growth on glucose (Sánchez et al., 2010). In particular, the 

antimicrobial activity of Bacillus sp. significantly decreased in the absence of a carbon 

source in the fermentation media (Vijavakumaret al., 2012). In another example, 

anthracycline production by Streptomyces peucetius was inhibited by high concentrations 

of glucose (Escalante et al., 1999).  

 

1.3.8.2 Nitrogen sources 
	  

 The nitrogen source is also an important factor in antimicrobial production. 

Vijavakumar et al. (2012) studied the effects of nitrogen sources on antibacterial 

production by Bacillus sp., and concluded that growth and the production of antibacterial 

compounds were maximized when nitrogen sources such as yeast extract, calcium nitrate, 

ammonium sulfate and potassium nitrate were included in the fermentation media 

separately. Ripa et al. (2009) concluded that yeast extract was the optimal nitrogen source 

for the production of bioactive metabolites in Streptomyces sp. RUPA-08PR, which was 

isolated from soil in Bangladesh.  
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1.3.8.3 Temperature, pH and incubation period 
	  

There have been many studies of the effects of temperature and pH on the 

production of antimicrobial compounds. In particular, Laiz et al. (2003) studied 

microorganisms isolated from different caves with varying temperatures in Spain (5, 13, 

20, 28, and 40°C), and reported that most bacteria could grown in the range 13-40°C; 

however, lower temperatures (13°C) were optimal for the growth of a higher diversity of 

species. Khizhnyak et al. (2011) isolated bacteria from water in a cave where the air 

temperature varied between 0 and 5°C, and found that the bacteria could grow at a low 

temperature (7°C), but the bacteria altered their morphology and consequently died at the 

higher temperature (35°C), indicating that the cave bacteria were adapted to the cold, 

which is also referred to as psychrophilic.  

 

Ripa et al. (2009) incubated a strain of actinomycetes isolated from the soil in 

northern Bangladesh at different temperatures (25-49°C), and found that the optimum 

temperature and pH for a new Streptomyces species, RUPA-08PR, were 39°C and 8, 

respectively, indicating that the new organism was mesophilic. In addition, the bacteria 

began producing bioactive metabolites after 7 days of incubation in fermentation broth, 

and optimal production was observed after 10 days and slowly decreased thereafter. Usha 

et al. (2011) found an initial pH of 7 and 30°C to be the optimal conditions for bioactive 

metabolite production by the rare actinomycete strain Pseudonocardia VUK-10.  

 

Rule and Cheeptham (2013) reported that 100 actinomycete strains, which were 

collected from a volcanic cave, showed the greatest metabolite production when their 

fermentation broth was incubated at 25°C for 10 days. Kay et al. (2013) incubated 

actinomycetes collected from a volcanic cave for 10 days, and found that strain E9 in the 

genus Streptomyces produced a high yield of secondary metabolites at pH 7 on day 4 of 

incubation at 28°C.  
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 Cladera et al., (2004) studied bacteriocin production by Bacillus licheniformis P40 

when cultured under aerobic conditions. During 50 h of cultivation, the organism showed 

the highest level of bacteriocin production after 15 h. Pattnaik et al. (2001) studied 

bacteriocin production by B. licheniformis 26 L-10/3RA cultured under anaerobic and 

aerobic conditions, and observed aerobic growth within 18 h and gradually increasing 

antimicrobial production after 1 day. However, it is not necessary that bacteria achieve 

optimal growth in order to maximize the production of antibacterial compounds (Leal et 

al., 2002) as, for example B. licheniformis 26 L-10/3RA lost its antimicrobial activity 

when exposed to an aerobic environment.  

 

1.3.8.4 Salts and minerals 
	  

The salt concentration also affects cell growth and the production of bioactive 

metabolites. Ripa et al. (2009) studied the optimum culture conditions for a new species 

of Streptomyces, RUPA-08PR, and showed that 1% NaCl maximized the production of 

bioactive metabolites, but the growth of the strain decreased when the NaCl 

concentration was greater than 1%. Vijayakumar et al. (2012) reported that the marine 

Streptomyces sp. VPTS3-1 produced maximum levels of secondary metabolites at a NaCl 

concentration of 4%, which is a suitable concentration for the growth of the organism. 

However, higher NaCl concentrations did not improve secondary metabolite production. 

Ripa et al. (2009) reported that K2HPO4 enhanced the production of bioactive metabolites 

by the actinomycete Pseudonocardia VUK-10 and the Streptomyces species RUPA-

08PR; however, 5% K2HPO4 was optimal.  

 

In conclusion, optimization of the sources and concentration of carbon, nitrogen, 

salts and minerals, as well as the temperature, pH and incubation period are very 

important during the discovery and isolation of novel antibiotics (Himabindu and Jetty, 

2006). 
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2.0 Materials and Methods 

2.1 Isolation of microorganism from cave 

2.1.1 Collecting samples 
	  

A total of 15 samples were previously collected from different sites of a volcanic 

cave at Wells Gray Provincial Park in British Columbia (BC), Canada (Figure 3). The 

samples collected included rocks, sterile swabs of percolating material, sediment, cave 

popcorn. Aseptic techniques were used to collect the samples and the samples were 

placed in sterile falcon tubes and zip-lock bags.  All samples were kept cold in a 

refrigerator at 5oC until the isolation process was complete. (This work was done by Paul 

Moote and Devon Rule) 

 

2.1.2 Isolation of cave microorganisms 
	  

One gram of each of the cave samples was diluted in sterile saline solution and 

plated onto different selective media using the glass spreading technique (Moote, 2010). 

These media consist of Actinomycetes Agar, Bennett’s Agar, Hickey Tresner (HT), 

Starch Casein Nitrate Agar, and Modified Soil Agar (Appendix A-1). After incubating all 

of the sample plates at 25oC for four weeks, microorganism colonies appeared. The 

colonies were sub-cultured and then purified on R2A media using the streak plate method 

(Katz 2010). 
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Figure 3: Cave contour map of the Helmcken Falls Cave in Wells Gray Provincial Park 
in British Columbia, Canada. Seventeen cave samples were collected from different sites 
in the cave. 1, 2 and 10 were collected near the cave’s entrance; 3, 4 and 9 were collected 
from its south wall; 5 and 6 were collected from its east corner; 7 was collected from its 
centre; 8 was collected from its northwestern side; 12 and 17 were from close to its 
northern wall; and 13, 14 and 15 were collected from its east wall (Moote 2009 and Rule 
2010). 

 

2.2 Optimizing the fermentation conditions of the cave strains 

2.2.1 Primary optimization of the cave strains 
	  

 The fermentation conditions of the cave strains were optimized to maximize their 

metabolite production. To do this, 16 cave isolates (from initial studies of Dr. 

Cheeptham’s former students, Paul Moote and Devon Rule) were inoculated into small 

test tubes (150 x 25 mm) containing 15 ml each of four different broths: Hickey-Tresner, 

ISP2 (International Streptomycetes Project), V-8 juice, and R2A (Appendix B). Also, 

extra tubes (150 x 25 mm) containing these broths were diluted tenfold. The aim of 

performing the dilutions was to create media similar to that of the parental environment, 

which contains a very low nutrient level, so as to increase results. All inoculated broths 

were incubated at 25oC with 250 rpm reciprocal shaking for 14 days. The isolates were 

then tested for antimicrobial production using the bioassay method described below.  
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2.2.2 Growing tested microorganisms for the antimicrobial assay 
	  

The tested microorganisms used in this project include:  Mycobacterium 

smegmatis JVC 1213 (MC2155), Extended spectrum beta-lactamase (ESBL) E.coli 

JVC1195 strain 1841, Micrococcus luteus, multi-drug resistant methicillin-resistant 

Staphylococcus aureus (MDR-MRSA), Acinetobacter baumanni strain 14394, Candida 

albicans, Klebsiella pneumoniae and Pseudomonas aeruginosa. Each tested 

microorganisms was inoculated onto the appropriate medium (Table 2) and was 

incubated in a 35°C shaker until growth appeared. The resulting tested microorganisms 

suspensions were then diluted to reach an absorbance of 0.132 at 600 nm (OD600) 

(Bollela et al.,1999). Afterwards, 1% (2.50 mL) of each tested microorganisms at the 

appropriate log phase OD600 was transferred to three beakers, 250 mL beakers containing 

nutrient, LB and HT molten agar (Appendix A). The microorganisms agar mixtures were 

then poured onto bioassay plates to test the antimicrobial activity of the cave bacteria 

against these microorganisms.  

 

Table 2:  The list of tested microorganisms, the media they were grown in, their Gram reactions 

and the positive controls used in this project.  

Tested Microorganisms        Gram Reaction      Media                       Antibiotic (Positive Control) 

Mycobacterium smegmatis                +                    NB               SXT (Sulfamethoxozole-23.75 µg JVC 

1213 (MC2155)                                                                                                      trimethoprim- 1.25 µg) 

ESBL E. coli 1841                             _                    LB                             C (Chloramphenicol 30 µg) 

Micrococcus luteus                             +                   NB                             E (Erythromycin 15 µg) 

MDR-MRSA ATCC 43300                +                   NB                       VA-30 (Vancomycin VA-30 µg) 
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Acinetobacter baumannii                    _                  LB                             C (Chloramphenicol 30 µg) 

ATCC19606 (JVC 119) 

Candida albicans                            Mold               H.T                      N/A – antifungal (Nystatin- 20 µg) 

Klebsiella pneumoniae                      _                   LB                              E (Erythromycin 15 µg) 

ATCC BAA 1705 

Pseudomonas aeruginosa                _                    MH                              E (Erythromycin 15 µg) 

Hickey Tresner (HT), Nutrient Broth (NB), Mueller Hinton (MH), Luria Bertani (LB) 

 

 

2.2.3 Primary screening of the cave bacteria isolates for antimicrobial production 
	  

To determine whether any of the cave isolates produced antimicrobial compounds 

in pure culture, we searched for the presence of any diffusible materials that inhibited the 

growth of the tested microorganisms in the bioassay plates. The procedure for testing 16 

microbial isolates for antimicrobial activity is the disc diffusion method (Pieboji 2009).  

This method uses sterile, 8 mm discs that are impregnated with bacterial fermentation 

broth and are placed on a glass plate in a fume hood to air dry (Figure 2). The positive 

control used for each bacterium is listed in Table 2, and the negative controls were discs 

soaked in the sterile broth medium appropriate for each bacterium.  
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Figure 4: The discs used to test the antimicrobial activity of the cave bacteria with the 
disc diffusion assay. The sterile discs were dipped in bacteria fermentation broth and 
were left to dry on a glass plate in the fume hood. 

Every 3 to 5 days, the bacteria isolates were screened against the tested 

microorganisms. The isolates that showed antimicrobial activities against the tested 

microorganisms were then further optimized to encourage these isolates to maximize 

their production.  

 

2.3 Further of the secondary metabolite production of four cave bacteria 
isolates 
	  

Four cave bacteria isolates, PM58B-RA, RA001, RA003, and RA004, which 

showed the highest antimicrobial activity against the tested microorganisms listed above, 

were studied further to determine whether the antibiotics they produced against the tested 

microorganisms in this study were new. To do this, at least two to four well-isolated 

colonies of the four isolates were selected from R2A agar plate culture. Then, the top of 

each colony was touched with a loop, and the growth was transferred into R2A broth. In 

the end, the culture broth was incubated at different temperatures to see if these bacteria 

can grow at low temperature (12˚C) that is similar to actual environment or at normal 

temperature (25˚C), with reciprocal shaking at 250 rpm, for 14 days. To determine the 

best growth temperature, pH, media and fermentation period of the four isolates in 

producing secondary metabolites, the high and low temperatures of 25 ˚C and 12 ˚C were 

used to grow them.  

 



38	  
	  

2.3.1 Study of the fermentation periods of the cave bacteria 
	  

The fermentation periods of the cave bacteria strains were optimized using a 

method described by Nanjwade and Shamarez (2010). The purpose of this procedure was 

to find the harvesting time at which the bacteria produced the highest yield of the 

antimicrobial agent (Fermentation time course). To do this, the primary seed cultures of 

the four isolates were incubated at 25˚C until growth occurred. Then, the seed cultures 

were used to inoculate 166 ml into 500 ml flasks and 333 ml into 1000 ml Erlenmeyer 

flasks containing R2A broth (Tabaraie et al., 2012). After that, the sterilized R2A broth 

was inoculated with 1% (1.66 ml) and 2% (6.66 ml) of the PM58B, RA001, RA003, and 

RA004 isolates, separately. Different inoculum volume (1% and 2%) was used to decide 

the most suitable volume for producing antimicrobial compound(s). Then, the flasks were 

incubated at 12˚C and 25˚C for 14 days. The production was determined daily by testing 

the packed cell volume (%PCV), the pH value, and the antimicrobial activities of the 

inoculated broths.  

Note that the antimicrobial production by cave microorganisms is normally an 

aerobic procedure. In addition, the broth cultures were centrifuged at 3000 rpm for 5 

minutes and then the supernatant was filtered by syringe (Kumari et al., 2013). The 

resulting filtrates were used for further antimicrobial activity. 

 

2.3.2 Testing the percentage of packed cell volume (%PCV) and the pH value of the 
inoculated broths 
	  

The expected growth times of the bacteria strains were determined daily during 

the fermentation process by using a %PVC cell counting kit. Three milliliters of broth of 

each of the four isolates was transferred into 15 ml centrifuge tubes, which were 

centrifuged at 250 rpm for 1 minute to measure the cell pellet volume after 

centrifugation. After that, the antimicrobial activities of the isolates were tested against 

those of the tested microorganisms mentioned below. In addition, the pH value of the 

fermentation broth of each isolate was recorded daily.  
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Another method, employed by Stettler et al., 2006 and Jordan, 2005, was used to 

determine the PCV measurements when the first method gave negative results first of all, 

1 ml of each isolate broth was transferred into a PCV tube (13 mm x 43 mm) (Techno 

Plastics Products AG, Trasadingen, Switzerland) whose maximum capillary volume is 5 

µl. Then, the tubes were centrifuged using a microcentrifuge for 1 minute at 5000 rpm. 

After centrifugation, the isolate cells were pelleted within the capillary. The height of the 

cell pellet defines the volume of the cells in the capillary. This volume can be converted 

into the PCV (%) using the formula described by Jordan (2005): PCV (%) = (volume of 

cell pellet/volume of sample) x 100 (1000 µl was the sample volume for each tube).  

 

2.4 The antimicrobial activity detection assay 

2.4.1 The cross-streak assay  
	  

In this study, the agar diffusion method (or the cross-streak assay) was used to 

determine how cave isolates communicate through their metabolites. This method was 

used by Northup et al. (2013) when they tested the antimicrobial activity of cave isolates 

against that of such tested microorganisms as Staphylococcus aureus (ATCC 6538), 

Kelbsiella pneumoniae (ATCC 13883), Shigella flexneri (ATCC 9199) and Streptococcus 

pneumoniae (ATCC 6303). In this study, they inoculated the cave isolates onto a nitrate 

broth and incubated them at 15-20˚C for 48 hours until visible growth appeared. After 

that, the cave cultures were inoculated using the cross-streak assay as described below.  

In our study, to carry out the agar diffusion assay, the cave isolates RA001, 

RA003, RA004 and PM58B were inoculated onto a R2A broth and were incubated at 

25˚C until growth was observed. Then, the cave isolates were streaked in one vertical line 

onto HT agar and R2A agar plates and incubated at 25˚C for 48 hours in order to obtain a 

thin line of growth. Subsequently, another layer of R2A and HT medium was added over 

the first layer of the medium on the original R2A and HT plates, and the plates were 

solidified. After that, each cave isolate was horizontally inoculated onto its vertical streak 



40	  
	  

and the plates were incubated at 25˚C for 48 hours. Then, any zones of inhibition were 

evaluated.  

 

2.4.2 Paper disc diffusion method 
	  

The first use of the paper disc diffusion method was in the 1940s (Vincent 1944). 

This method can be easily used in the laboratory to detect the antimicrobial activity of 

bacteria culture and its low cost. In addition, it is suitable for use if there is no 

requirement to determine the concentration or type of the present antibiotic (Driscoll 

2012). For these reasons, this method was used instead of the cross-streaking assay 

method that was previously described to detect the communication of the four isolates 

through their metabolites. Sterile, 8 mm discs were impregnated with 80 µl of broth from 

the four bacterial isolates that exhibited the most antimicrobial activity against the tested 

microorganisms. The discs were placed on a glass plate in a fume hood to air dry.  Then, 

1% (2.50 mL) of the isolates was transferred into 250 ml flasks containing the R2A agar. 

The isolate-agar mixture was poured onto bioassay plates to test the four isolates’ 

antimicrobial activities against one another. When the plates were solidified, the paper 

discs of the strains that were not combined with the R2A Agar were placed onto the 

bioassay plates.  For example, if the R2A agar was inoculated with the RA003 isolate, the 

papers discs were soaked with RA001, RA004, PM58B-RA and Streptomyces griseus, 

which was used as a positive control. After that, the plates were incubated at 25˚C and 

were checked daily for one week for results.  

 

2.5 Identification of antimicrobial production by the cave isolates 
	  

Cave isolate identification is essential to determine if these isolates are novel 

species, have new type of antimicrobial compounds and new microbial interaction. 

Different traditional methods were used to identify the four isolates, including phenotypic 

identification using Gram staining, culturing and the biochemical method. However, 
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these methods were insufficient to yield accurate results. Thus, a 16S rRNA sequencing 

method and software for the four isolates identifications was used to attain the definitive 

isolates identification.  

2.5.1 Morphological observations 
	  

Both the microscopic and macroscopic characteristics of isolates RA001, RA003, 

RA004, and PM58B-RA were observed and used to identify the isolates. Macroscopic 

morphologies such as the shapes and colours of the colonies and the diffusible 

pigmentation of the isolates were recorded. In addition to the observation of 

morphological traits, chemotaxonomy was also used to enhance the identification of the 

strains.  

 

 

2.5.2 Chemotaxonomy 
	  

In addition to the observation of morphological traits, chemotaxonomy was also 

used to enhance the identification of the cave bacteria strains used in this project.  This 

method is simple in principle, and separates the amino acids in the cell walls of the four 

isolates; it was employed to investigate whether these substances, which belong to the 

four isolates, are similar to those of Streptomyces griseus, which was used as a positive 

control (see 3.0 Results Figures 17, 18, 19 and 20). 

 

2.5.2.1 Thin Layer chromatography of whole cell hydrolysates 
	  

To better identify the bacteria isolates used in this project, the hydrolysates in the 

cell walls of the four antimicrobial-producing actinobacterial strains were analyzed for 

amino acid content using thin layer chromatography and cell wall hydrolysis (Staneck, 

1974). 
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First, the four isolates were grown on R2A media at 25˚C with reciprocal shaking 

at 250 rpm. Then, the cells were collected at the maximal growth stage by centrifuging 

them at 2000 rpm for 10 minutes, washing them with 10 mL of saline water, and 

centrifuging them again at 2000 rpm.  One ml of distilled water was then added to the 

collected cells and the cells were hydrolyzed and sonicated. Hydrolysis occurred when 1 

ml of 6M of HCl was added to 5 mL of the cells’ pellets and then placed in a 161x300 

glass 15 mL test tube, which was placed in an autoclave at 121˚C for 15 minutes. After 

cooling, the tube was opened and its contents were centrifuged. Then, the liquid 

hydrolysate was evaporated in a 50˚C water bath to remove most of the HCl.  

 

Subsequently, ascending chromatography was performed on the pellets of the 

cells for approximately 18 to 22 hours using the solvent system of methanol: distilled 

water: 6M HCL: pyridine (80:26:4:10, v/v). Then, the chromatogram was air-dried and 

its amino acid spots were visualized by spraying the chromatogram with 0.2% ninhydrin 

in acetone, leaving it to dry for 3 hours, and then placing it in the chromatography oven at 

100˚C for three minutes to visualize the spots. The cells were also sonicated, after 

washing them with 10 mL of saline water for about one minute to remove cell 

components, and were subsequently centrifuged at about 10,000 rpm for 10 to 20 

minutes. Streptomyces griseus was used as a positive control in the TLC. Its cells, except 

the amino acid standard, were also hydrolyzed and sonicated. The migration of the 

standard DAP spot and the other amino acids was observed in the TLC after three 

minutes of heating the TLC. 

 

 

2.5.3 Molecular identification of the antimicrobial-producing cave strains using 16S 
rRNA gene sequencing 
	  

To prepare the four antimicrobial-producing strains, RA001, RA003, RA004 and 

PM58B-RA, for 16S rRNA sequencing, the strains were cultured in R2A agar medium for 

three days at 25 ˚C. When the cave bacteria appeared on the plates, the plates were sent to 

Seoul, Korea for 16S rRNA gene sequencing.  There, polymerase chain reaction (PCR) 



43	  
	  

was used to clarify the taxonomic status of these isolates, as described herein. At 

Macrogen, Korea, template DNA of each of the isolates was prepared and colonies of 

each isolate were collected with a sterilized toothpick and suspended in 0.5 mL of sterile 

saline in a 1.5 mL centrifuge tube. The cultures were then centrifuged at 10,000 rpm for 

10 minutes. After removal of the supernatant, the pellet was suspended in 0.5 mL of Insta 

Gene Matrix (BIO-Rad, USA), incubated at 56 ˚C for 30 minutes, and then heated to 

100˚C for a further 10 minutes.  

After heating, the supernatant was used for PCR. For the PCR process, 1 µl of 

each template DNA sample was added to 20 µl of the PCR reaction solution. 518F/ 800R 

primers were used to amplify the 1400 bp bacterial 16S rRNA gene (Table 3) and the 

amplification cycle was performed 35 times at 94 ˚C, for 2 minutes. at 94 ˚C, for 45 s, at 

55 ˚C, for 60s 72 ˚C for 60 s, and at 72 ˚C for 5 minutes. Then, the PCR products of each 

isolate were removed from the unincorporated PCR primers and dNTPs by using the 

Montage PCR Clean up Kit (Millipore). 

For sequencing, 518F/ 800R primers were used as seen in Table 5. Sequencing 

was performed by using Big Dye terminator cycle sequencing products, which were 

resolved on an Applied Biosystem model 3730XL automated DNA sequencing system 

(Applied Biosystem, USA) at Macrogen, Inc., in Seoul, Korea. The resulting 16S rRNA 

sequences were compared with the GenBank databases by using BLAST. 

 

Table 3: Primers used in amplification and 16S rRNA sequencing of the four cave strains 

Primers          Sequences                                      Amplification                Sequencing 

518F                 CCA gCAgCCgCggTAATA Cg                                               Used 

800R                TAC CAgggT ATC TAA TCC                                                 Used 
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2.4.3.1 Sequence and phylogenetic analysis  
	  

The NCBI BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to 

identify the strains. The DNA sequences generated in this study (1,000 to 1,400 bp long) 

were submitted to BLAST and RDB to identify their closest relatives based on their 16S 

rDNA sequences.  The nucleotide sequences of the four isolates obtained from this study 

have been deposited in the GenBank database under the Accession Numbers Table 4.  

 

Table 4: The Accession Numbers of PM58B-RA, RA001, RA003, and RA004 

Sequence ID       Organism ID                     Isolate           GeneBank accession number 

Seq1              Bacillus	  licheniformis	  	  	  	  	  	  	  	  	   PM58B-RA            KF991616 

Seq2             Sphingomonadaceae	  	  	  	  	  	  	  	  	  	  	  	  RA003                    KF991617 

Seq3             Arthrobacter	  agilis               RA001                    KF991618 

Seq4            Arthrobacter	  agilis                RA004                    KF991619 

 

 

2.5.4 Using Matrix-assisted laser desorption/ionization (MALDI-TOF) to identify the 
four antimicrobial-producing isolates 
The aim of using the Matrix-assisted laser desorption/ionization (MALDI-TOF) was to 

get an accurate isolates identification and confirm it with the other identification results.  

2.4.4.1 Growing bacterial isolates  
	  

To confirm the identity of the isolates using MALDI-TOF mass spectrometry, the 

isolates were first freshly grown. RA001, RA003, RA004, and PM58B-RA and 

Streptomces griseus were grown in R2A broth and were incubated at 25˚C with 250 rpm 
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shaking until growth appeared, as described previously. The isolates were also cultured 

on R2A agar plates at 25˚C for 4 days. Streptomces griseus was used as a positive control 

in both cases. The purpose of using different growth conditions is to find out which 

growth conditions show accurate results. 

2.5.4.2 Sample preparation for formic acid extraction 
	  

Sample preparation of two different growth conditions of the four strains for 

formic acid extraction was performed for direct identification of bacteria as described 

previously by Bruker and Daltonik (2013). First, strains colonies present in the R2A broth 

were collected by centrifugation.  To do this, 1 mL of each bacteria isolate was 

transferred into separate Eppendorf tubes using a sterile pipette tip. Then, the tubes were 

centrifuged for 3 minutes at 13,000 rpm. Next, the supernatant was removed, and 300 µL 

of deionized water and 900µL of EtOH were added to the remaining liquid. After 

centrifugation at 14,000 rpm for 2 minutes, the supernatant was decanted and centrifuged 

again. Then, the residual EtOH was removed by carefully pipetting it off without 

disturbing the pellet. Following this, the pellet was allowed to dry at room temperature 

for three minutes.  Twenty-five µL of 70% formic acid was added to the pellet and was 

mixed well by vortexing. After that, 25 µL of ACN was added, and the tube was mixed 

carefully and centrifuged for 2 minutes at 14,000 rpm.  Then, 1 µL of the supernatant was 

transferred onto a MALDI target plate (Bruker Daltonics, Breman Germany), the plate 

was air-dried and was overlaid with 1 µL of matrix solution. After air-drying, the target 

plate was placed in the MALDI-TOF mass spectrometer for analysis.  

The samples of the four isolate colonies grown on solid R2A media were then 

prepared, one single colony (5-10 mg) of each bacteria isolate was transferred into 

separate Eppendorf tubes using a sterile pipette tip.  Then, 300 microliters (µL) of 

deionized water was added into each tube and then was mixed well by vortexing. After 

that the tubes were centrifuged for 3 minutes at 13,000 rpm. Next, 900 µL €uof EtOH 

were added to the remaining liquid. After centrifugation at 14,000 rpm for 2 minutes the 

supernatant was decanted and centrifuged again. Then, the residual EtOH was removed 

by carefully pipetting it off without disturbing the pellet. 
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 Following this, the pellet was allowed to dry at room temperature for three 

minutes.  Twenty-five µL of 70% formic acid was added to the pellet and was mixed well 

by vortexing. After that, 25 µL of ACN was added, and the tube was mixed carefully and 

centrifuged for 2 minutes at 14,000 rpm.  Then, 1 µL of the supernatant was transferred 

onto a MALDI target plate (Bruker Daltonics, Breman Germany), the plate was air-dried 

and was overlaid with 1 µL of matrix solution. After air- drying, the target plate was 

placed inside the MALDI-TOF mass spectrometer for analysis 

 

2.5.4.3 MALDI spotting protocol 
The protocols described below for the preparation of bacterial samples prior to 

MALDI analysis were provided by Bruker Daltonics (Bremen, Germany). 

 

 2.5.4.4 Direct transfer method 
 

The matrix, alpha-cyano-4-hydroxycinnamic acid (HCCA), was prepared by 

dissolving 2.5 mg in 250 µL standard solvent that was composed of 50% acetonitrile 

(ACN), 47.5% H2O, and 2.5% trifluoroacetic acid (TFA). The dissolved matrix was 

vortexed at room temperature for 1 minute and sonicated for 5 minutes to ensure 

complete dissolution. A single colony (5–10 mg) of bacteria was directly spotted as a thin 

film onto a stainless steel MALDI target plate (Bruker Daltonics). The smeared bacterial 

sample was then overlaid with 1 µL of 70% (v/v) formic acid and allowed to dry at room 

temperature before pipetting 1 µL of HCCA solution on top of it. The sample was dried 

at room temperature and analyzed immediately on the MALDI instrument. 

 Formic acid extraction method 

A single colony (5-10 mg) was placed into an Eppendorf tube containing 300 µL 

of deionized water. The sample was vortexed for 2 minutes before adding 900 µL of 

ethanol. The sample was mixed again and centrifuged at 13,000 rpm for 2 minutes. The 

resulting pellet was recovered by decanting most of the ethanol, and then dried at room 

temperature for 3 minutes. Depending on the size of the pellet, 50-80 µL of 70% formic 

acid was added to dissolve the pellet. The same volume of acetonitrile was added and the 
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sample was centrifuged at maximum speed until all insoluble material was collected in a 

single pellet on the bottom of the vial. The resulting supernatant (1 µL) was spotted on 

the target plate and allowed to dry at room temperature before spotting 1 µL of the 

HCCA solution.  

 

 

2.5.4.5 Data acquisition and analysis 
	  

Mass spectra were obtained using a bench-top Microflex MALDI-TOF MS from 

Bruker Daltonics® (Bremen, Germany) equipped with a pulsed nitrogen laser at 355 nm 

wavelength. Spectra were recorded from 2 kDa to 20 kDa (positive mode) using 

FlexControl 3.3 software (ion source 1: 20 kV; ion source 2: 18.25 kV; lens voltage: 7 

kV; laser frequency: 60 Hz; pulsed ion extraction (PIE) delay: 10 ns). A mass gate of 500 

Da was set for all experiments. A bacteria test standard was used to calibrate the 

instrument. Individual mass spectrum from each spot was acquired by averaging 240 

laser shots. The data acquisition was set to automate and the “random walk” movement 

was activated at 10 shots per raster during the sequence. Peak lists, intensities, and peak 

areas were calculated using the peak-picking centroid algorithm in FlexAnalysis 3.3 

software. Mass spectra were exported to Biotyper 3.1 for evaluation by comparing the 

bacterial protein fingerprints to an existing database. The same Bruker bacterial test 

standard which is composed of Escherichia coli DH5 alpha peptide was used as a 

reference to maintain the validity of the results. 

 

2.6 Extraction and Purification of the Secondary Metabolite  

  
The aim of this study is to partially identify the secondary metabolites present in 

the isolates that showed activity against tested microorganisms.  In collaboration, Dr. Arjun 

Banskota of NRC in Halifax has greatly contributed to this section.  
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The isolates, RA001, RA003, RA004, and PM58B-RA were grown in 2 L of R2A 

broth, separately, at both temperature 12 ˚C and 25 ˚C as previously mentioned. Next, the 

time course of fermentation in each isolate was determined and the day that showed the 

highest result of the antimicrobial activity of the isolates was chosen for harvesting time.  

For instance, on day 10th for RA001, on day 5th for RA003 and PM58B-RA, and on day 

9th for RA004, and then these culture broths were centrifuged at 4000 rpm for 10 minutes. 

After discarding the supernatant, the pellets in each of the centrifuge tube were 

resuspended in the rest of the isolates culture (20 mL). All pellets were sent to National 

Research Council at Halifax, NS for further purification of secondary metabolites. 

2.6.1 Extraction and Purification of Secondary Metabolites 

RA004: The culture broth (2.0 L) was evaporated under reduced pressure to 250 

mL and extracted with EtOAC (250 mL x 2). The combined EtOAc fraction further dried 

under reduced pressure yielding 31.0 mg EtOAc extract. The EtOAc extract was 

dissolved in MeOH filtered through a 13 mm nylon membrane filter with 0.20 µm pore 

size (VWR, USA) and subjected for HPLC purification. Semi-preparative HPLC was 

performed on an Agilent 1200 series HPLC using an Nova Pack C18 column (5µm, 7.8 × 

300 mm) with a H2O/Acetonitrile linear gradient (1:9 to 0:1 between 0 to 20 minutes). 

Nine fractions were collected (Fraction 1 to Fraction 9) eluted at 2.0, 2.3, 3.0, 3.8, 4.9, 

5.8, 7.4, 7.8 and 9.7 minutes, respectively. The flow chart 1 is shown in Appendix B. The 

proton NMR spectra of all the above fractions were recorded on Bruker 700 MHz 

spectrometer, indicating none of the fraction has pure secondary metabolites. Thus, 

LC/MS and NMR used for purification of all isolates RA001, RA003, RA004, and 

PM58B-RA instead of HPLC purification.  

PM58B: The mycelia received from TRU were lyophilized yielding 460 mg dry 

mycelia, which were extracted with MeOH (25.0 mL x 2). The combined MeOH extract 

were dried under reduced pressure yielding MeOH extract (50.0 mg). The MeOH extract 

was further fractionated by solid phase extraction using Discovery DIC-18 cartridge 

eluting with H2O/MeOH/EtOAc gradient into four fractions [fraction 1 (27.9 mg, H2O 10 

mL), fraction 2 (13.0 mg, H2O/MeOH, 1:1, 10 mL), fraction 3 (2.3 mg, MeOH, 10 mL) 

and fraction 4 (2.0 mg, EtOAC, 10 mL)]. Further LC/MS and NMR study revealed that 
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these fractions contain multiple components and subjected for further anti-bacterial 

activity test. The flow chart 2 is shown in Appendix B. 

RA003: The mycelia received from TRU were lyophilized yielding 470 mg dry 

mycelia, which were extracted with MeOH (25.0 mL x 2). The combined MeOH extract 

were dried under reduced pressure yielding MeOH extract (20.0 mg). The MeOH extract 

was further fractionated by solid phase extraction using Discovery DIC-18 cartridge 

eluting with H2O/MeOH/EtOAc gradient into three fractions [fraction 1 (10.4 mg, H2O 

10 mL), fraction 2 (5.3 mg, H2O/MeOH, 1:1, 10 mL), fraction 3 and (3.9 mg, MeOH, 10 

mL). Further LC/MS and NMR study revealed that these fractions contain multiple 

components and subjected for further anti-bacterial activity test. The flow chart 3 is 

shown in Appendix B.  

RA004: The mycelia received from TRU were lyophilized yielding 450 mg dry 

mycelia, which were extracted with MeOH (25.0 mL x 2). The combined MeOH extract 

were dried under reduced pressure yielding MeOH extract (90.0 mg). The MeOH extract 

was further fractionated by solid phase extraction using Discovery DIC-18 cartridge 

eluting with H2O/MeOH/EtOAc gradient into four fractions [fraction 1 (71.3 mg, H2O 10 

mL), fraction 2 (4.3 mg, H2O/MeOH, 1:1, 10 mL), fraction 3 (8.8 mg, MeOH, 10 mL) 

and fraction 4 (3.2 mg, EtOAc 10 ml). Further LC/MS and NMR study revealed that 

these fractions contain multiple components and subjected for further anti-bacterial 

activity test. The flow chart 4 is shown in Appendix B. 

RA001: The mycelia received from TRU were lyophilized yielding 260 mg dry 

mycelia, which were extracted with MeOH (25.0 mL x 2). The combined MeOH extract 

were dried under reduced pressure yielding MeOH extract (120 mg). The MeOH extract 

was further fractionated by solid phase extraction using Discovery DIC-18 cartridge 

eluting with H2O/MeOH/EtOAc gradient into three fractions [fraction 1 (90.4 mg, H2O 

10 mL), fraction 2 (4.1 mg, H2O/MeOH, 1:1, 10 mL), and fraction 3 (16.5 mg, MeOH, 10 

mL). Further LC/MS and NMR study revealed that these fractions contain multiple 

components and subjected to further anti-bacterial activity test. The flow chart 5 is shown 

in Appendix B. 



50	  
	  

Next, RA003 isolate grew again in the TRU lab for isolation. Pellets sent to 

National Research Council at Halifax, NS for further isolation of secondary metabolites. 

The mycelia of RA003 received from TRU were lyophilized yielding 580 mg dry 

mycelia, which were extracted with MeOH (25.0 mL x 2). The combined MeOH extract 

were dried under reduced pressure yielding MeOH extract (160 mg). 
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3.0 Results 
 

3.1 Sample collection and isolation of cave microorganisms  
	  

In total, 16 cave samples were obtained from different sites within the Helmcken 

Falls Cave. The samples collected included rocks, and sterile swabs of percolating 

material, soil and cave popcorn. After incubation of the plates at 25oC for 4 weeks, a 

variety of colonies were observed (Figure 5). Of the four culture media tested, 

Actinomycete agar, SCNA agar and Bennett’s agar were found to be optimal in terms of 

supporting the growth of the all different kind of bacteria. Out of a total of 317 cave 

microorganisms, 16 isolates selected based on their morphological features under the 

light microscope by using a Gram stain, the viability, consistent activity and some unique 

features in their growth. Thus, these isolates were selected for further antimicrobial 

activity assays. 

 

 

	  

Hickey Tresner              Bennett’s agar             SCNA agar            Actinomycete agar 

Figure 5: Isolation of cave microorganisms by culture on different selective media 
(Moote 2010). 
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3.2 Primary screening of the antimicrobial activity of the sixteen bacterial 
isolates  

The antimicrobial activity of the sixteen bacterial isolates was examined using the 

disc-diffusion (Kirby-Bauer) method against Mycobacterium smegmatis, Micrococcus 

luteus, MDR-MRSA, Acinetobacter baumannii, ESBL E. coli and Candida albicans. The 

inhibition zones were compared with the inhibition zones of the positive control (see 

Table 2 in Chapter 2).  

The effect of different fermentation broths on the antimicrobial activity of the 16 

cave isolates were examined. Seven of the 16 isolates (NC18, PM184, PM58B-RA, 

RA003, RA001 and RA004; Table 5) demonstrated various antimicrobial activities 

against the tested microorganisms when cultured in Hickey Tresner (HT), R2A and ISP#2 

broth.  

In particular, PM58B-RA, RA003, RA004, NC18 and 245 demonstrated high 

antimicrobial activities when cultured in HT broth, while PM58B-RA, RA001, RA003, 

A1A3 and 46A demonstrated high antimicrobial activities in R2A broth, and PM184 and 

RA003 demonstrated high antimicrobial activities with ISP#2; none of the strains 

demonstrated any antimicrobial activity with V8-juice. These results indicate that the 

media can affect the production of antimicrobial secondary metabolites by the isolates.  

In contrast, when cultured in broth that had been diluted ten times with the aim of 

increasing the production of antimicrobial secondary metabolites, the 16 cave isolates 

failed to demonstrate any antimicrobial activity.  

The isolates PM58B-RA, RA001, RA003 and RA004 were selected for further 

study as they exhibited high antimicrobial activities against various tested 

microorganisms in the primary screening test and consistency in antimicrobial agent 

production (Table 5).  
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Table 5: The zones of inhibition (mm) observed in the 16 bacterial isolates against the various 

tested microorganisms: Mycobacterium smegmatis, Micrococcus luteus, MDR-MRSA, 

Acinetobacter baumannii, ESBL E. coli and Candida albicans when cultured in Hickey Tresner, 

R2A, ISP#2 and V-8 juice broth.  

	  

Isolate	   Gram	  Positive	   Gram	  Negative	   Yeast	  

	   M.	  luteus	  	   M.	  smegmatis	   MDR-MRSA	   A.	  baumannii	  	  	   ESBL	  E.	  coli	   C.	  albicans	  

NC18	   0	   	  	  	  	  	  	  13.00	   0	   0	   	  	  	  	  	  	  	  0	   	  	  	  	  	  0	  

PM184	   0	   	  	  	  	  	  10.00	   0	   0	   	  	  	  	  	  	  	  0	   	  	  	  	  	  0	  

245	   8.99	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  	  0	   	  	  	  	  0	  

PM58B-‐
RA	  	  

18.00	  

	  

	  	  	  	  	  16.00	  

	  

0	  

	  

0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  

	  	  	  	  	  	  	  0	   15.00	  

PMA1A3	   0	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  	  0	   	  	  	  0	  

RA003	   15.62-‐
11.00	  

	  	  	  	  	  	  	  0	   13.45	   0	   	  	  	  	  	  	  	  0	   	  	  	  	  0	  

A1A3	  (3)	   8.50	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  	  0	   	  	  	  	  0	  

RA001	   9.00	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  0	   	  	  	  	  0	   	  

NC18(p-‐
2)	  

0	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  0	   	  	  	  	  0	   	  

RA002	   0	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  0	   	  	  	  0	  

RA004	   0	   	  	  	  	  	  	  	  0	   0	   11.40	   	  	  	  	  	  	  	  0	   	  	  0	  

126	   0	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  	  0	   	  0	  

46A	   0	   	  	  	  	  	  	  	  9.14	   0	   0	   	  	  	  	  	  	  	  0	   0	  

A1A2(2)	   0	   	  	  	  	  	  	  	  0	   0	   	  0	   	  	  	  	  	  	  	  0	   0	  

E9	   0	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  	  0	   0	  

SK119	   0	   	  	  	  	  	  	  	  0	   0	   0	   	  	  	  	  	  	  	  0	   0	  

Positive	  
control	  

20.44	  	   	  	  17.9	  	   	  	  	  	  	  	  	  	  19.87	  	   25.3	  	   27.35	  	   	  	  	  	  	  24	  	  
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Notes: Sterile 8 mm paper discs were used to test the antimicrobial activity of each strain. The 

four highlighted isolates exhibited the highest degree of antimicrobial activity; the highlighted 

values indicate the best media for that isolate, as follows: HT, R2A and ISP#2.	  	  

	  

	  

	  

Figure 6: Primary screening of the 16 cave strains against M. luteus. The RA003 isolate 
showed antimicrobial activity against M. luteus when cultured in R2A and ISP#2 broth. 
The diameters of the zones were measured using sliding calipers.  

 

 

3.3 Further screening of the antimicrobial activity of the four selected isolates 

3.3.1 Effect of fermentation broth on antimicrobial activity  
	  

The effect of different fermentation broths on the antimicrobial activity of the 

isolates is presented in Figure 7. The four selected cave isolates (PM-58BRA, RA001, 

RA004, RA003) displayed various degrees of antimicrobial activity when cultured in 

each of the four fermentation broths, as shown in Table 6 and Figure 7. In particular, 

Hickey Tresner (HT) broth and R2A broth were best fermentation media, as these broths 

led to the highest antimicrobial activity for most of the cave bacterial isolates; 46% of the 

cave isolates showed antimicrobial activity when grown in R2A broth, 39% showed 

antimicrobial activity when grown in HT broth, 15% showed antimicrobial activity when 

grown in ISP#2 broth, while none of the cave bacterial isolates demonstrated 
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antimicrobial activity against the various tested microorganisms when grown in V-8 juice 

(Table 6 and Figure 7). R2A broth was identified as the optimal fermentation media for 

the cave isolates rather than HT broth, as the zones of inhibition for the PM58B-RA, 

RA001, RA004 and RA003 isolates were larger when grown in R2A broth than HT broth. 

In addition, these strains produced pigmentation in R2A medium but did not produce any 

pigmentation when cultured in the other media. These results indicated that of the four 

fermentation media examined, R2A broth may enhance the production of secondary 

metabolites with antimicrobial activity by the isolates.  

 

 

 

Table 6: Evaluation of the impact of growth medium on the antimicrobial activity of the sixteen 

isolates towards Gram-positive and Gram-negative bacteria and yeast. 

Media    M. luteus M. smegmatis MDR-MRSA A. baumannii C. albicans 

HT 18.00-8.99 13.00 13.45 11.04 0 

ISP#2 10.00-11.00 0 0 0 0 

R2A 
15.62-9.00-

8.50 16.00-9.14 0 0 15.00 

V8-juice 0 0 0 0 0 

HT = Hickey Tresner, ISP#2 = International Streptomyces Project #2 (Yeast-Malt Extract). The 

highlighted values indicate the various degree of inhibition zones produced by strains. HT, R2A and ISP#2 

are the best media that enhance the production of secondary metabolites with antimicrobial activity 

by the isolates.  
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3.3.2 Effect of inoculation volume on antimicrobial activity 

  
As shown in Figures 8, 9, 10 and 11, the use of different seed inoculum volumes 

(1% and 2%) had apparent effects on the growth and inhibition zones of the PM-58B-RA, 

RA001, RA004 and RA003 isolates. Different amounts (1% and 2%) of seed inoculate 

were tested to determine the appropriate harvesting day for maximal antimicrobial 

activity.  

The antimicrobial activity of the PM58B-RA, RA001, RA003 and RA004 isolates was 

higher when inoculated at 2% than 1%. For example, when PM58B-RA was inoculated at 

2%, this isolate started to display antimicrobial activity against M. luteus on day 4 of 

culture; however, the same isolate did not exert any antimicrobial activity against M. 

luteus when inoculated at 1% (Figure 8). When inoculated at 2%, the RA003 isolate 

started to show antimicrobial activity against MDR-MRSA on day 5 of culture; however, 

Figure 7: Identification of the best fermentation broth. Of the 16 isolates tested, six 
demonstrated antimicrobial activity against Gram-positive bacteria or C. albicans when 
grown in R2A broth, five demonstrated antimicrobial activity against Gram-positive or 
Gram negative bacteria when grown in HT broth; two demonstrated antimicrobial 
activity against only M. luteus when grown in ISP#2 broth, while none of the strains 
demonstrated antimicrobial activity against any various tested microorganisms when 
cultured in V-8 juice. 



57	  
	  

this isolate also displayed antimicrobial activity against MDR-MRSA on day 6 when 

inoculated at 1% (Figure 11). In general, and as shown in Figures 8, 9, 10 and 11, all four 

of the isolates showed faster production of antimicrobial activity and more rapid growth 

when inoculated at 2% than 1%. However, the PM58B-RA isolate started to display 

antimicrobial activity on day 8 when inoculated at both 1% and 2% (Figure 8). 

When the seed inoculum volume was 2%, the maximum inhibition zones were 

15.00 mm for PM-58BRA against M. luteus, 9.92 mm for RA001 against M. luteus, 

12.35 mm for RA004 against A. baumannii and 19.17 mm for RA003 against M. luteus. 

When the seed inoculum volume was 1%, the maximum inhibition zones were 8.87 mm 

for PM-58BRA against M. smegmatis and 13.83 mm for RA003 against MDR-MRSA; 

RA001 and RA004 did not show any antimicrobial activity at this temperature. 

 

3.3.3 Effect of the length of fermentation on antimicrobial activity 

  
Determination of the optimal fermentation day is also significant for the maximal 

production of antimicrobial compounds. Antibiotic production can take place on specific 

days during the stationary phase. Therefore, the production of antimicrobial secondary 

metabolites may not increase as the number of days of culture increases. In fact, 

increasing the number of days of culture may lead to the production of toxins which 

inhibit the production of antimicrobial secondary metabolites.  

Figures 8, 9, 10 and 11 illustrate the effects of the number of days of fermentation 

on the antimicrobial activity of the isolates. The optimal days were day 4 for PM-58BRA, 

RA001 and RA004 and day 7 for RA003. The maximum inhibition zone of the PM-

58BRA isolate against M. luteus and M. smegmatis (15.00 mm and 11.5 mm) occurred on 

days 4 and 11, respectively (Figure 8). The maximum inhibition zones of the RA001 

isolate (9.92 mm) against M. luteus occurred on day 4 (Figure 9). The maximum 

inhibition zones of the RA004 isolate (12.85 mm) against A. baumannii occurred on day 

9 (Figure 10). The maximum inhibition zones of the RA003 isolate (19.17 mm and 

17.19) against M. luteus and MDR-MRSA occurred on day 7 (Figure 11). After these 
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times, the production of antimicrobial secondary metabolites by the PM58B-RA, RA001, 

RA004 and RA003 isolates decreased. However, there were obvious differences in 

antimicrobial production by the PM58B-RA, RA001, RA004 and RA003 isolates 

between 4 and 11 days of culture, as the inhibition zones of these isolates changed over 

time. For example, the inhibition zone of the PM58B-RA isolate reached 9.00 mm on day 

8, decreased to 7.93 mm on day 9 and then increased to 8.87 mm on day 10; similar 

patterns were also observed for the RA001, RA004 and RA003 isolates. 

 

3.3.4 Effect of pH and packed cell volume (PCV%) on antimicrobial activity 

The effect of pH on the antimicrobial activity of the PM58B-RA, RA001, RA004 

and RA003 isolates is shown in Figures 8, 9, 10 and 11. In general, growth and 

antimicrobial activity are optimal at around pH 7 for actinomycetes (Usha et al., 2011; 

Ababutain et al., 2013). In present study antimicrobial activity was observed for most of 

the isolates between pH 7.8 and 8.5. In terms of antimicrobial activity, the optimal pH 

values for the PM58B-RA, RA001, RA004 and RA003 isolates were 7.8, 8.3, 8.3 and 

8.5, respectively.  

The microtube system manufacture was used to measure the total of cell volumes 

of the isolate cultures in uL. Glass PCV tubes were found to be better than 15 mL 

centrifuge tubes  as the isolates in this study grew very slowly and resulted in low PCV% 

values. In general, inoculum volumes of 2% led to higher PCV (%) than inoculum 

volumes of 1%. The best temperature for the growth of the isolates was 12°C; however, 

the maximal growth of each isolate occurred on different days of culture. The maximum 

growth of PM58B-RA , RA001, RA003 and RA004 occurred after day 9. It is worth 

noting that these PCV (%) values are very low compared with the results of other studies; 

this is addressed in the discussion (Chapter 4).   
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. 

Figure 8: Effect of the duration of culture on the antimicrobial activity of the PM-58B-
RA isolate. The pH and packed cell volume (PCV%) were measured every 24 h, and 
antimicrobial activity against M. luteus and M. smegmatis was measured using the disc-
diffusion (Kirby-Bauer) method. 
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Figure 9: Effect of the duration of culture on the antimicrobial activity of the RA001 
isolate. The pH and % packed cell volume were measured every 24 h, and antimicrobial 
activity against M. luteus was measured using the disc-diffusion (Kirby-Bauer) method 
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Figure 10: Effect of the duration of culture on the antimicrobial activity of the RA004 
isolate. The pH and % packed cell volume were measured every 24 h, and antimicrobial 
activity against A. baumannii was measured using the disc-diffusion (Kirby-Bauer) 
method. 
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Figure 11: Effect of the duration of culture on the antimicrobial activity of the RA003 
isolate. The pH and % packed cell volume were measured every 24 hours and 
antimicrobial activity against M. luteus, and MDR-MRSA were measured using the disc-
diffusion (Kirby-Bauer) method. 
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3.3.5 Effect of fermentation temperature on antimicrobial activity 
	  

To investigate the effect of fermentation temperature on the antimicrobial activity 

of the four isolates, RA001, RA003, RA004 and PM58B were cultivated at 12˚C and 

25˚C. As shown in Table 6, RA001, RA003, RA004 and PM58B demonstrated 

antimicrobial activity against some microorganisms including Mycobacterium smegmatis, 

Micrococcus luteus, Acinetobacter baumannii, Pseudomonas aeruginosa, MDR-MRSA 

and K. pneumoniae. The largest zones of inhibition against the Gram-positive and Gram-

negative bacteria were observed when the isolates were cultured in R2A broth at 12˚C or 

25˚C. The inhibition zones for RA003 (19.17 mm), RA001 (9.92 mm) and PM58B-RA 

(15 mm) were larger when cultured at 12˚C than 25˚C; however, the RA003, RA004 and 

RAPB58B-RA isolates also showed some antimicrobial activity when cultured at 25˚C. 

The highest degree of inhibition was observed for RA003 (13.83 mm) and RA004 (12.85 

mm) when cultured at 12˚C. These results suggest that 12˚C is a better temperature for 

fermentation of the RA003 and PM58B-RA and RA001 isolates than 25˚C (Table 7 and 

Figures 12,13,14 and 15).  
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Table 7: The inhibition zone diameter of the paper discs used (8 mm) for the four bacterial isolates 

against a variety of various tested microorganisms when cultured at 12˚ and 25˚C 

Isolate M. luteus M. 
smegmatis 

MDR-
S.aureus 

A. baumannii P. aeruginosa K. 
pneumoniae 

 12˚C 25˚C 12˚C 25˚C 12˚C 25˚C 12˚C 25˚C 12˚C 25˚C 12˚C 25˚C 

RA001 9.92 0 0 0 0 0 0 0 0 0 0 
 

0 
 

RA003 19.17 0 0 0 17.91 13.83 0 0 0 0     0 
 

0 
 

RA004 0 0 0 0 0 0 10.85 12.85 0 0     0 
 

0 
 

PM58B-
RA 

15 0 11.5 8.87 0 0 0 0 0 0 0 
 

0 
 

 

 

 

 

 

  

 

 

 

                          

                            

  

 

Figure 12: Effect of temperature on the growth of the RA001 
isolate. 
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Figure 13: Effect of temperature on the growth of the RA003 
isolate. 

Figure 14: Effect of temperature on the growth of the RA004 
isolate. 
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Figure 15: Effect of temperature on the growth of the PM58B-
RA isolate. 
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Table 8: Best culture conditions for the antimicrobial activity of each isolate.  

Isolate              pH        Temperature        Seed Inoculum        Days             	  

RA001             8.3-8.5           12˚C                2%                            3-13             

RA003             8.5-8.6           12˚C                2%                            4-11  

RA004             8.3                  12˚C               2%                            4-11  

PM58B-RA     7.8-8.0            25˚C               2%                            3-8               

	  

The best temperature and pH for the antimicrobial activity of the PM58B-RA, 

RA001, RA004 and RA003 isolates ranged from 12 and 25˚C and 7.8-8.6, and each 

isolate had different optimal number of days of culture (Table 8).  

	  

3.4 Test of the antimicrobial activity of the four isolates against each other 
using the cross-streak assay and paper disc diffusion method 
	  

The antimicrobial activity of each of the four isolates (RA001, RA003, RA004, 

PM58B-RA) against the other isolates was used to determine how cave isolates 

communicate through their metabolites by using the cross-streak assay method and paper 

disc diffusion method. No inhibition or interruption of the growth of any of the four 

isolates was observed using the cross-streak assay, and additionally, and some colonies 

even spread across the plates (Figure 16). However, using the paper disc diffusion assay, 

clear inhibition zones were observed on day six (Figure 17). In particular, PM58B-RA 

inhibited the growth of RA001, RA003, RA004 and the positive control Streptomyces 

griseus, while Streptomyces griseus inhibited the growth of RA001, RA003 and RA004 

(Table 9). Thus, the paper disc diffusion method was a much more sensitive way of 

testing the antimicrobial activity of the isolates against one another, and indicated that the 

PM58B-RA isolate and Streptomyces griseus possess antimicrobial activity and factors 

that do not exist in RA001, RA003 and RA004.
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Table 9: Inhibition zones (in mm) for each the four isolates against one another and Streptomyces 

griseus in the antimicrobial activity assay. 

Tested	  isolates	   RA001	   RA003	   RA004	   PM58B-RA	   Streptomyces	  griseus	  

RA001 0 0 0 11.02 12.03 

RA003 0 0 0 11.05 11.32 

RA004 0 0 0 10.02 11.96 

PM58B-RA 0 0 0 0 0 

Streptomyces griseus 0 0 0 14.96 0 
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A)             B)	   	  

Figure 16: Test of the antimicrobial activity of each of the four isolates against the other 
isolates using the cross-streak assay. (A) RA003, RA004 and PM58B-RA did not inhibit 
the RA001 isolate on R2A medium. (B) RA001, RA004 and PM58B-RA did not inhibit 
the RA003 isolate and spread over the entire plate on HT and R2A medium.  

 

A)      B) 	  

Figure 17: Test of the antimicrobial activity of each of the four isolates against the other 
isolates using the paper disc diffusion assay. (A) Clear zones of inhibition were observed 
for PM58B-RA (14.37 mm) and Streptomyces griseus (19.04 mm) against RA001 and 
(B) PM58B-RA against Streptomyces griseus (18.72 mm) in R2A media. 
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3.4 Identification of the four isolates with antimicrobial activity  

3.4.1 Morphological observations and chemotaxonomic study 
	  

Primary classification and identification of the four isolates was based on their 

microscopic/ macroscopic morphological and chemotaxonomic characteristics. The four 

cave isolates were identified as Gram-positive bacteria on basis of their morphological 

characteristics under the light microscope, such as Gram staining. However, each of the 

four isolates also possessed morphological characteristics that supported their 

identification as non-actinomycete bacteria (Table 10). For example, RA001 and RA004 

were rod-shaped and RA003 and PM58B-RA were cocci. Under the light microscope, 

PM58B-RA appeared filamentous; however, RA001, RA003 and RA004 appeared non-

filamentous. Furthermore, the colonies of all four isolates shared some similar features. 

RA001 and RA004 had similar circular colonies but different pigmentations, and RA003 

had circular colonies and differed from PM58B-RA in both colony shape and 

pigmentation (Figure 18). PM58B-RA had filamentous colonies. Cell wall analysis was 

performed using thin layer chromatography. Notably, LL-diaminopimelic acid, a vital 

component of peptidoglycan in S. griseus, was not detected in the whole cell hydrolsates 

or sonicated cells samples from the RA001, RA003, RA004 or PM58B-RA isolates. All 

four isolates results in the plate observed as streaking and the silica gel plate surface were 

pricking, this experiment repeated two times with the same results (Figures 19, 20, 21 

and 22).  

	  

	   	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	   	  
	  	  	  	  	  	  PM58B-‐RA	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  RA001	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  RA004	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  RA003	  

Figure	  18: Morphology of the colonies of the PM58B-RA, RA001, RA004 and RA003 
isolates in R2A medium at 25˚C after about 5 days (All images are 50x magnifications). 
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Table 10: Microscopic morphological features of the four cave isolates possessing 

antimicrobialactivity. 

Isolate         Gram reaction Cell shape Microscopic 
morphology 

Classification 

RA001                    + 

RA003                    - 

RA004                    + 

PM58B-RA            + 

Cocci 

Rod 

Cocci 

Rod 

Non-filamentous 

Non-filamentous 

Non-filamentous 

Filamentous 

Non-actinomycetes 

Non-actinomycetes 

Non-actinomycetes 

Non-actinomycetes 
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Figure 19: Thin layer chromatography analysis of the amino acid composition of whole 
cell hydrolysates of the RA003 isolate. The arrow indicates the LL-diaminopimelic acid 
(DAP) spot. 
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Figure 20: Thin layer chromatography analysis of the amino acid composition of whole 
cell hydrolysates of the RA004 isolate. The arrows indicate the LL-diaminopimelic acid 
(DAP) spots.
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Figure 21: Thin layer chromatography analysis of the amino acid composition of whole 
cell hydrolysates of the PM58B-RA isolate. The arrows indicate the LL-diaminopimelic 
acid (DAP) spots. 
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Figure 22: Thin layer chromatography analysis of the amino acid composition of whole 
cell hydrolysates of the RA001 isolate. The arrows indicate the LL-diaminopimelic acid 
(DAP) spots. 
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3.4.2 Production of pigments by the isolates  

  
Pigments can be found in various natural sources including fruits, vegetables, 

seed roots and microbes. Pigments extracted from microbes are called “biocolors” 

because of their biological source, and many have been proven to be safe for human use 

(Goswami et al., 2010). It was particularly noteworthy that PM58B-RA and RA003 

produced a white pigment, while RA001 and RA004 produced a pink pigment after about 

5 days of culture at 25˚C in R2A medium. However, PM58B-RA and RA003 isolates 

produced white pigments at 12 and 25˚C; the pink pigment was only observed after 14 

days of fermentation days.  

 

3.4.3 Molecular identification of the four antimicrobial cave isolates by 16S rRNA gene 
sequencing 
	  

The taxonomy of the four antimicrobial-producing isolates was determined by 

16S rRNA gene sequencing. The results revealed that all four isolates are non-

streptomycete bacteria. Specifically, the RA003 isolate belongs to the 

Sphingomonadaceae family, RA001 and RA004 belong to the Arthrobacteria agilis 

species, and PM58B-RA belongs to the species Bacillus licheniformis. All four isolates 

shared 99% similarity to their most closely-related ribosomal RNA sequences in the 

Genbank database (Table 11; see sequences in the Appendix C). 
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Table 11: Taxonomic status of the four isolates according to 16S rRNA gene sequencing.  

Bacterial isolates                         Family/Species                                   % Similarity 

RA001                                    Arthrobacter agilis                                             99 

RAOO3                                   Sphingomonadaceae                                          99 

RA004                                    Arthrobacter agilis                                             99 

PM58B-RA                            Bacillus licheniformis                                         99 

	  

	  

	  

Table 12: Identification of the four cave isolates using MALDI-TOF MS. 

Isolate                    Classification status                       Taxonomy level 

RA001                    Arthrobacter agilis                               Species 

RA003                   Sphingopyxis terrae                              Species 

RA004                    Arthrobacter agilis                              Species 

PM-58B-RA           Bacillus licheniformis                         Species 
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3.4.4 Identification of the four antimicrobial cave isolates by MALDI-TOF MS  
	  

MALDI-TOF mass spectrometry was used to further confirm the identity of the 

RA001, RA003, RA004 and PM58B-RA isolates. Two methods were used to prepare the 

isolates for analysis: formic acid extraction and the direct spotting method, and the 

spectra of the isolates were compared to MALDI-TOF mass spectrometry protein or 

peptide profiles in the Biotyper 2.0 database.  

None of the isolates could be identified using the direct spotting method, and 

culture on R2A agar media combined with formic acid extraction led to higher 

identification scores for the isolates than culture in R2A broth combined with formic acid 

extraction (see Figures 21, 22, 23 and 24). There were differences in result 

interpretations, for example, the direct spotting method showed inconsistent results which 

may due to contamination while the results with formic acid extraction was more 

sensitive which showed consistent results.  

The mass spectra of the four cave isolates were compared to the MALDI-TOF 

mass spectra database ((see Figures 21, 22, 23 and 24).). The RA003 isolate obtained the 

highest identification score, indicating that RA003 can most likely be confirmed as 

Sphingopyxis terrae DSM 12444T HAM (Appendix D 1-1, 1-2). For the PM58B-RA, 

RA001 and RA004 isolates, MALDI-TOF MS helped to confirm their identity in 

combination with the 16S rRNA gene sequencing analysis; RA001 and RA004 was 

confirmed to belong to the species Arthrobacteria agilis and PM58B-RA was confirmed 

to belong to the species Bacillus licheniformis. However, a low identification score was 

obtained for RA003 using MALDI-TOF MS (data not shown).  

The identification of the RA001, RA003, RA004 and PM58B-RA isolates is 

summarized in Table 11. MALDI-TOF MS was found to be a complementary technique 

for identification of the isolates in conjunction with 16S rRNA sequence analysis. Using 

this combination of techniques, the RA003 isolate was identified to the species level and 

PM58B-RA, RA001 and RA004 were identified to the genus level. Thus, MALDI-TOF 
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MS could be a rapid, complementary and accurate method for identifying bacteria 

compared to other traditional microbiology methods. 	  	  

	  

	  

	  

Figure 23: MALDI-TOF MS spectra for the RA003 isolate 
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        Figure 24: MALDI-TOF MS spectra for the RA001 isolate 

	  

          Figure 25: MALDI-TOF MS spectra for the RA004 isolate
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          Figure 26: MALDI-TOF MS spectra for the PM58B-RA isolate. 
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3.5 Extraction and purification of the bioactive antimicrobial compounds 
produced by the four isolates 
	  

Dry mycelia from RA001 (260 mg), RA003 (470 mg), RA004 (450 mg) and 

PM58B-RA (460 mg) were extracted twice with MeOH (25.0 mL x 2), and the combined 

MeOH extracts for each isolate were dried under reduced pressure yielding MeOH 

extracts (PM58B-RA, 50.0 mg; RA003, 20.0 mg; RA004, 90.0 mg; RA001, 120 mg). 

The MeOH extracts were further fractionated by solid phase extraction using Discovery 

DIC-18 cartilages and elution with a H2O/MeOH/EtOAc gradient into several fractions 

(see Appendix B). The fractions from each isolate were subjected to antimicrobial 

activity assays against tested microorganisms which they previously demonstrated 

antimicrobial activity: M. smegmatis and M. luteus for PM58B-RA, M. luteus for RA001, 

A. baumannii for RA004, and MDR-MRSA and M. luteus for RA003. 

The 1H NMR spectra of all of the fractions from the RA001, RA003, RA004 and 

PM58B-RA isolates were recorded; none of the fractions were found to be pure. 

Unfortunately, none of the fractions demonstrated antimicrobial activity against any of 

the tested microorganisms tested, except for fraction 2 from isolate RA003 (RA003E0102). 

This active fraction inhibited the growth of MDR-MRSA (by 12.38 mm) and was 

subjected to further analysis to identify the active compound (Figure 23). 
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Figure 27: Inhibition zone (12.38 mm) of the active fraction RA003E0102 from the 
RA003 isolate against MDR-MRSA. 

	  

The proton NMR and LC/MS data for the active RA003E0102 fraction are 

provided in Appendix E. The NMR signals represent the hydrogen atoms of the 

compounds present in RA003E0102. No interesting signal was observed using LC/MS, 

and all of the compounds eluted between 1-2 min (UV – lower chromatogram) indicating 

the fraction mostly contained water soluble chemicals from the culture media. After 

removing water-soluble chemicals from the culture media, lyophilized dry mycelia (580 

mg) were extracted twice with MeOH (25.0 mL x 2), the combined extract was dried 

under reduced pressure yielding MeOH extract (160 mg), further fractionated by solid 

phase extraction using a Discovery DIC-18 cartilage and eluted using a 

H2O/MeOH/EtOAc gradient into two fractions: fraction 1 (44.2 mg, H2O 50 mL) and 

fraction 2 (5.0 mg, H2O/MeOH, 50 mL). Further LC/MS and NMR study (awaiting the 

results of further anti-bacterial activity tests).  

 



84	  
	  

4.0 Discussion 
 

4.1 Sample collection and initial selection 
	  

The objective of this study was to isolate cave bacteria from a volcanic cave in 

Wells Gray Provincial Park, BC, and to determine if they produce metabolites with 

antimicrobial activity against various microorganisms including multi-drug resistant 

pathogens. The present study demonstrated that cave bacteria are promising sources of 

antimicrobial compounds. This finding is supported by Kay et al. (2013), Cheeptham et 

al., (2013) who previously showed that cave bacteria isolated from the Helmcken Falls 

cave, BC, possessed significant antimicrobial activity against Gram positive and negative 

bacteria. Of the total of 317  microorganisms isolated, 16 bacterial isolates were 

identified based on their growth features and selected for further antimicrobial activity 

assays on the basis of their viability and antimicrobial activity in initial screening tests. 

 

4.2 Antimicrobial activity of the 16 bacterial isolates in different media 
	  

Sixteen isolates were cultured separately in four different fermentation broths 

(Hickey Tresner, R2A, ISP#2, V-8 juice), and the antimicrobial activity of the isolates 

was examined using the disc-diffusion (Kirby-Bauer) method. These 16 isolates were 

also grown in the same fermentation broth that had been diluted ten-fold in order to 

replicate the environmental conditions of the cave. Caves are considered to be an 

oligotrophic environment with low amounts of nutrients available, in which the 

organisms such as cave bacteria grow slowly (Gabriel and Northup, 2013).  

Therefore, diluted media have been shown to be appropriate for bacteria that are 

adapted to an oligotrophic environment (Vartoukian et al., 2010). When incubated in the 

diluted broths, none of 16 isolates demonstrated the ability to inhibit or kill any of the 

seven microorganisms (Mycobacterium smegmatis, Micrococcus luteus, MDR-MRSA, 

Acinetobacter baumannii, ESBL E. coli, Candida albicans), even though some of the 
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isolates demonstrated antimicrobial activity when cultured in the undiluted fermentation 

broths. This result may be explained by the fact that the production of antimicrobial 

compounds can be influenced by the concentrations of the carbon, nitrogen and 

phosphorus available (Yegneswaran et al., 1988; El-Refai et al., 2011). 

The four media contain different concentrations of nutrients; however, ten-fold 

dilution may have decreased the concentration of the nutrients to a level lower than that 

required for the production of antimicrobial secondary metabolites. The nutrients in the 

media enable microbes to gain energy, build cellular structures and grow. In general, 

variations in the nutrient concentrations of the culture media, including carbon, nitrogen, 

ammonia and phosphate, can prevent or enhance the production of antibiotics by 

microorganisms (EL-Refai et al., 2011).  

The presence of the optimum carbon and nitrogen sources are also important for 

their antimicrobial activity (Northup at el., 2011). The glucose concentration of the 

culture media also affects antibiotic production (Himabindu and Jetty, 2006; Awais et al., 

2007; Muhammad et al., 2009; Usta and Demirkan, 2013). Hasan et al. (2009) reported 

that maximum zones of inhibition (32 mm and 24 mm) were produced by B. pumilus 

against M. luteus and S. aureus when cultured in media containing 3% glucose. Awais et 

al. (2007) and Muhammad et al. (2009) found that B. pumilus produced the maximum 

zone of inhibition (26 mm) against M. luteus in 5% glucose, and B. subtilis produced a 

maximum zone of inhibition (19 mm) in 1% or 5% glucose. Awais et al. (2007) 

demonstrated that the antimicrobial activity of B. pumilus against M. luteus increased 

with the glucose concentration, with 2% glucose the optimal concentration. Haavik 

(1974) reported that high concentrations of carbon decreased or inhibited the enzymatic 

synthesis of a polypeptide antibiotic by Bacillus licheniformis. The results of Haavik 

(1974) support our findings, as the maximum inhibition zones were obtained when the 

isolates were cultured in R2A broth, which contains 0.05% glucose and 0.05% wt/vol 

soluble starch. R2A broth was also best for the growth of the PM58B-RA, RA001, 

RA004 and RA003 isolates. R2A broth contains lower concentrations of carbon than 

other broths such as HT, ISP#2 and V-8 juice. However, these isolates did not show any 

antibiotic activity when grown in ten-fold diluted R2A broth, possibly due to the very low 
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concentration of carbon and nitrogen sources in this media. Therefore, bacteria can not 

gain energy, build their cell structure or grow in diluted media. Another possibility is that 

these 16 isolates may need more than 14 days incubation in diluted media to adapt to 

diluted media.  

In this study, the lowest rates of antimicrobial activity were observed in ISP#2 

and V-8 juice. On the contrary, Cheeptham et al. (2013) cultured cave actinomycetes in 

ISP#2, V-8 juice and HT broths (within 1% variation for each chemical), and found 

ISP#2 and V-8 juice were the best broths for the production of secondary metabolites by 

actinomycetes. However, HT led to half the antimicrobial activity of ISP#2 and V-8 

juice. Kay et al. (2012) found that strain E9, which was also isolated from the Helmcken 

Falls cave, showed significant antimicrobial activity against P. larvae when grown in V-8 

juice. Badji et al. (2006) found that ISP#2 was the best media for the antifungal and 

antibacterial activity of actinomycetes isolated from soil. ISP#2 and V-8 juice contain 

higher concentrations of glucose and nitrogen compared to R2A and HT. For example, 

ISP#2 contains glucose (0.4% wt/vol) and yeast extract (0.7% wt/vol) as a nitrogen 

source. V-8 juice contains D-glucose (1.4% wt/vol) and D-fructose (1.4% wt/vol), but 

contains a lower concentration (0.07%) of nitrogen from organic and inorganic sources 

(Cheeptham et al., 2013); V-8 juice also contains yeast extract (0.01%) as a source of 

nitrogen. However, Haavik (1974) supported the use of low concentrations of carbon as 

high concentrations of carbon decreased or inhibited the enzymatic synthesis of a 

polypeptide antibiotic. However, in the present study, some of the 16 isolates were 

identified as non–actinomycetes, in contrast to the studies of Cheeptham et al. (2013) and 

Kay et al. (2012) in which all isolates were identified as actinomycetes. Cheeptham et al. 

(2013) reported that actinomycetes produce secondary metabolites under less than ideal 

conditions.  

HT media contains dextrin (1% wt/vol) as a carbon source and led to higher 

antibiotic production than ISP#2 and V-8 juice in this study. Awais et al. (2007) and 

Muhammad et al. (2009) found that B. subtilis produced a maximum zone of inhibition 

(19 mm) in 1% glucose. In the present study, a maximum zone of inhibition (18 mm) 

against M. luteus was found with HT broth, which contains a lower concentration of 

glucose than ISP#2 and V-8 juice. Ten-fold dilution decreased the concentrations of 
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carbon and nitrogen in ISP#2 and V-8 juice and inhibited the antimicrobial activity of the 

16 isolates.  

Another possible explanation for our results could be that ISP2# and V-8 juice are 

too rich for the cave isolates. Northup et al. (2011) reported that cave microorganisms 

often survive in very low nutrient concentrations and may not be able to live in rich 

media. This supports our results that ISP2# and V-8 juice broths may not sufficiently 

replicate the actual environment for growth of most of the 16 isolates, except for the 

RA003 and PM184 isolate which demonstrated antimicrobial activity in ISP#2 broth. 

 
Seven of these isolates (NC18, PM184, PM58B-RA, PMA1A3, RA003, RA001 

and RA004; Table 2), inhibited or killed some of the selected microorganisms 

(Mycobacterium smegmatis, Micrococcus luteus, MDR-MRSA, Acinetobacter 

baumannii, and Candida albicans) when they grew in non-diluted broth. However, they 

did not show growth and antimicrobial activity in diluted version of the different broths 

used in the primary screening. Vartoukian et al. (2010) and Giraffa and Neviani (2001) 

reported that when viable cells are exposed to stresses such as low pH, low temperature 

and limited nutrients, the cells may shift to a state in which they remain viable but non-

cultivable (VBNC) (Vartoukian et al., 2010). In addition, the low nutrient conditions in 

our study could cause a stress on the cave isolates, replicating the process known as 

selective pressure (Gabriel & Northup, 2013). A poor medium that contains limited 

nutrients may stimulate the cells to become resistant instead of undergoing slow growth 

(Cheeptham, 2013). In addition, VBNC isolates have specific growth requirements, such 

as specific nutrients, pH conditions, incubation temperatures or oxygen levels (Cladera et 

al., 2004; Vartoukian et al., 2010). This may explain the fact that the seven isolates 

showed antimicrobial activity in R2A and HT broth, but may have shifted to VBNC when 

cultured in diluted or non-diluted ISP#2 and V-8 juice.   
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4.3 Selection of best media for further antimicrobial activity assays 
	  

Different media have been examined for culture of the cave and soil community 

(Rule, 2013; Cheeptham, 2013; Ababutain et al., 2013). However, it is well recognized 

that only a small proportion of bacteria can be cultured in vitro (Davis, 2005; Vartoukian, 

2010). Molecular ecological techniques have revealed the presence of a wide variety of 

novel microbes in cave and soil communities, demonstrating our inability to culture and 

study soil bacteria. This problem limits our understanding of the variety of species in soil 

communities (Dayal et al., 2013; Hugenholtz et al., 1998). Therefore, in this study, we 

attempted to improve the fermentation process for cave microorganisms by using non-

traditional media. 

Many studies have demonstrated the effects of different media on fermentation 

and antibiotic production by microbes (Dayal et al., 2013; Al-Judaibi, 2011). In the 

current study, the composition of the fermentation broth was found to enhance 

antimicrobial production. This was confirmed by the fact that PM58B-RA, RA001, 

RA004, RA003, NC18, 46A, A1A3 and 245 produced the maximum inhibition zones 

when grown in R2A (6/16 isolates demonstrated antimicrobial activity), compared to 

Hickey Tresner (5/16) and ISP#2 (2/16). However, the other nine isolates (Table 1) did 

not demonstrate antimicrobial activity when grown in V-8 juice.   

RA003 inhibited M. luteus (15.62 mm) when cultured in R2A broth, and inhibited 

MDR-MRSA (13.45 mm) when cultured in HT broth. PM-58B-RA inhibited M. luteus 

(18 mm) when cultured in HT broth, and inhibited M. smegmatis (16 mm) when cultured 

in R2A broth. It is clear that the R2A and HT broths enabled these isolates to produce 

antimicrobial compounds; however, these media have different nutrient compositions. 

HT and R2A broths were prepared according to standard methods (within 1% for 

each chemical; Appendix A). HT broth contains beef and yeast extract (0.1% wt/vol) as a 

nitrogen source, CaCl2 (0.002% wt/vol) as a mineral source and dextrin (1% wt/vol) as a 

carbohydrate source. Dextrin contains mixture of substances including glucose, lactose, 

sucrose and cornstarch, which are all sources of carbon. However, R2A broth contains 

yeast extract (0.05% wt/vol) and proteose peptone (0.05% wt/vol) as nitrogen sources, 
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Casamino Acids (0.05% wt/vol) as a source of amino acids, and glucose (0.05% wt/vol) 

and soluble starch (0.05% wt/vol) as carbon sources. R2A broth also contains minerals 

such as K2HPO4 (0.3% wt/vol) and MgSO4.7H2O (0.005% wt/vol), and sodium pyruvate 

(0.3% wt/vol), which is a source of energy for dividing cells. R2A broth contains most of 

the essential nutrients such as carbon, nitrogen and salts, while HT broth lacks some of 

these minerals. Starch was previously found to be the most suitable sole carbon source 

for optimum growth and antibiotic production, with peptone and NaNO3 the most 

suitable sole nitrogen source for antibiotic production and optimum growth, respectively 

(Ababutain et al., 2003). The maximum antibiotic production by Streptomyces sp. was 

obtained in a medium that included soluble starch, peptone, K2HPO4, MgSO4.7H2O, KCl 

and trace FeSO4.5H2O (Ababutain et al., 2003). 

PM58B-RA (Bacillus licheniformis) and RA003 (Sphingopyxis terrae) preferred 

R2A broth for the production of antimicrobial activity, while RA001 (Arthrobacter agilis) 

and RA004 (Arthrobacter agilis) preferred R2A broth for pigment production. In 

addition, PM58B-RA, RA001, RA004 and RA003 started growing after 5 days on R2A 

plates while they only began to grow after 7 days on HT. R2A medium contains low 

concentrations of carbon and nitrogen and higher levels of nutrients than HT, V-8 juice 

and ISP#2. Cheeptham et al. (2013) identified a Helmcken Falls cave isolate that grew in 

HT medium as Streptomyces microflavus. In addition, many studies have indicated the 

advantages of R2A medium, especially for promoting the growth of bacteria and pigment 

production (Reasoner and Geldreich, 1984). R2A medium contains a variety of minerals 

such as K2HPO4 (0.3% wt/vol) and MgSO4.7H2O (0.005%) which are essential for 

bacterial growth and antimicrobial activity (Ueda et al., 1997; Atta, 1999; Aman, 2001). 

Ripa et al. (2009) and Mangamuri et al. (2014) stated that K2HPO4 and MgSO4.7H2O 

enhanced antimicrobial production by Streptomyces sp. compared to HT medium, which 

does not contain these minerals. Therefore, R2A medium was the best medium for the 

antimicrobial activity and production of pigments by the isolates compared to HT, ISP#2 

and V-8 juice. In the end, the PM58B-RA and RA003 isolates were selected for further 

study due to their high antimicrobial activity, while RA001 and RA004 were selected as 

they produced pink pigmentation in R2A medium in addition to their high and consistent 

antimicrobial activity.  
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4.3.1 Production of pigments by the isolates  
	  

Reasoner and Geldreich (1984) reported that a long incubation time (up to 14 

days) increased bacterial yield as well as pigment production on R2A medium. The 

results of our study support the observations of RA001 and RA004 produced pink 

pigmentation after 5 days of incubation, especially on agar plates rather than broth. 

However, R2A medium was only suitable for the production of pigmentation by RA001 

and RA004 at 25°C. 

 

Young et al. (1985) reported that no parallelism existed between pigment 

production and the production of antibiotics. However, a number of studies have reported 

the effects of bacterial pigmentation on antimicrobial activity (Gauteier and Flatau, 1976; 

Nakamura et al., 2003). Nakamura et al. (2003) studied the antibacterial activity of a 

violet pigment produced by the psychrotrpic bacterium RT102 strain, and found that high 

concentrations of the violet pigment led to growth inhibition or caused cell death of a 

number of pathogens. In addition, pigmentation in microorganisms has recently been 

suggested to be an indicator of the production of active compounds. For example, 

Streptomyces are known produce different pigments such as red, blue and violet. These 

colours are associated with compounds with antimicrobial, antiviral, antitumor, 

antiprotozoal, antioxidant, anticancer and other activities (Ferreira et al., 2004; Matz et 

al., 2004; Deorukhkar et al., 2007; Kim et al., 2010). Further experiments are necessary 

to investigate the relationship between these cave bacterial pigmentation and the 

production of bioactive compounds.  

 

4.4 Study of fermentation conditions for the four selected isolates 
	  

The optimal fermentation conditions for various caves bacterial isolates have been 

examined in a number of previous studies (Lueschow et al., 2013; Bhullar, 2011). 

Different physiochemical conditions such as the growth media, seed inoculum volume, 
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pH, temperature and fermentation time were studied with the aim of enhancing the 

antimicrobial activity of the cave isolates.  

 

4.4.1 Temperature 
	  

Three of the four isolates selected for further analysis in this study (RA001, 

RA004, RA003) produced maximum antimicrobial activity when incubated at 12°C and 

are therefore adapted to the cold. Many other studies have provided similar results. Laiz 

et al. (2003) studied different caves in Spain at different temperatures (5, 13, 20, 28 and 

40°C), and reported that most cave microorganisms could grow at temperatures between 

13-40°C; however, a low temperature (13°C) was optimal for the growth of a higher 

diversity of species. Khizhnyak et al. (2011) isolated bacteria from water in a cave where 

the air temperature varied from 0 to 5°C, and found that the bacteria could grow at a low 

temperature (7°C) but not at a higher temperature (35°C); the bacteria altered their 

morphology and subsequently died at the higher temperature.  

However, PM58B-RA produced maximum antimicrobial activity at 25°C. This 

result is in agreement with Rule and Cheeptham (2013), who reported that 100 

actinomycete strains, which were collected from a volcanic cave, showed the highest 

metabolite production when fermented at 25°C.  

The actual temperature range in the Helmcken Falls cave is 7.5-12.2°C 

(Cheeptham, 2012). The differences in the optimum temperatures for antimicrobial 

activity may be due to variations in the precise habitats of the microorganisms in the 

cave. This may be explained by that fact that the temperature also affected the growth of 

the microorganisms. For example, RA001, RA004 and RA003 grew faster at lower 

temperatures (Figure 12, 13, 14 and 15), leading to maximal antimicrobial activity (Table 

7).  
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4.4.2 pH 
	  

Many studies have reported that various pH values are optimal for antimicrobial 

production and growth by bacteria from a different habitat. Ababutain et al. (2013) found 

that Streptomyces sp. demonstrated maximal production of antimicrobial agent in media 

with an initial pH of 6.0. Three actinomycete isolates had a broader spectrum of 

antibacterial activity and showed production of potential antibiotics under mildly alkaline 

conditions at pH 7.2 (Arifuzzaman et al., 2010). Crawford et al. (1993) reported that the 

highest growth of actinomycete strains occurred between pH 6.5-8; some strains could 

not grow at pH 6.0, and pH 5.5 inhibited the growth of a large number of strains. On the 

contrary, Höltzel et al. (1998) reported that pH 5.5 was optimal for the production of 

antimicrobial compounds.  

 

Previously, it was shown that the region of the cave from where the samples were 

collected has a pH ranging from 6.42-8.38 (Cheeptham, 2013). Alkaline pH values 

ranging from 7.8 to 8.6 were found to effectively promote the antimicrobial activity and 

growth just for all the four isolates in the current study. In general, the pH changes during 

the fermentation process. Variations in the antimicrobial activity of each isolate were 

observed between pH 7.8 and 8.5, with pH values of 7.8, 8.3, 8.3 and 8.5 best for 

PM58B-RA, RA001, RA004 and RA003, respectively. Our results indicate that, not 

surprisingly, the bacteria have maximal antibiotic producing activity at the same pH as 

their natural conditions. 

 

4.4.3 Fermentation period  
	  

In the current study, the maximum production of antimicrobial agents and isolate 

growth occurred between 3 to 11 days of a 14 day incubation period on R2A broth. 

Figures 11, 12, 13, and 14 illustrate the effect of fermentation days on the antimicrobial 

activity of the isolates. The maximum inhibition zones for the PM58B-RA isolate (15 

mm and 11.5 mm) against M. luteus and M. smegmatis, respectively, were observed on 

days 4 and 11, (Figure 11).  
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The maximum inhibition zone for the RA001 isolate (9.92 mm) against M. luteus 

was observed on day 4 (Figure 12). The maximum inhibition zone for the RA004 isolate 

(12.85 mm) against A. baumannii occurred on day 9. The maximum inhibition zone for 

the RA003 isolate (19.17 and 17.19 mm) against M. luteus and MDR-MRSA was 

observed on day 7. After these times, the antimicrobial activity of the four isolates 

decreased. However, there were obvious variations in the antimicrobial activity of the 

PM58B-RA, RA001, RA004 and RA003 isolates between days 4 and 11, as the inhibition 

zones of these isolates varied over time. For example, the inhibition zone of the PM58B-

RA isolate against M. luteus was 9 mm on day 8, decreased to 7.93 mm on day 9 and then 

increased to 8.87 mm on day 10; similar trends were also observed for RA001, RA004 

and RA003.  

The antimicrobial activity of the PM58B-RA, RA001, RA004 and RA003 isolates 

was examined over a 14 day fermentation period. Reasoner and Geldreich (1985) 

observed that a longer incubation time (up to 14 days) led to higher bacterial counts and 

pigment production for slow-growing bacteria, especially in R2A media. However, 7-12 

days were reported to be best in other studies.  

For example, Kay et al. (2013) found that actinomycete strains isolated from the 

Helmcken Falls cave displayed the maximal production of antimicrobial agents on day 4 

of a 7-day incubation. On the contrary, Ripa et al. (2009) found that Streptomyces sp. 

began producing bioactive metabolites after 7 days of incubation in Czapek-Dox 

(alkaline) broth; however, maximal production occurred after 10 days and slowly 

decreased thereafter. El-Refai et al. (2011) found that maximal growth and antibiotic 

production by Nocardioides luteus were observed up to 12 days of incubation in five 

different media: starch casein medium, arginine glycerol salts medium, starch nitrate 

medium, M3 medium and ISP medium. Rule and Cheeptham (2013) reported that 100 

actinomycete strains, which were collected from the Helmcken Falls cave, showed 

highest metabolite production when incubated in Hickey Tresner (HT) at 25°C for 7 to 10 

days.  

Cave microorganisms are usually slow-growing (Vartouukian et al., 2010), so 

they may require more time to grow in vitro. This supports the low PCV (%) values 
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obtained in this study for all four isolates compared to other studies. For example, Kay et 

al. (2012) found that strain E9, isolated from the Helmcken Falls cave, showed high PCV 

(%) values ranging from 0.5 to 2.5%. In this study, the maximal PCV (%) values for 

PM58B-RA, RA001, RA004 and RA003 were 0.12, 0.22, 0.08 and 0.07%, respectively. 

Even though these isolates showed low PCV (%), they demonstrated effective 

antimicrobial activity, especially, the RA003 isolate against MDR-MRSA.  

This indicates that the ability to produce antibiotics is not fixed for microbes; 

some isolates were capable of producing antimicrobial agents after only a short duration 

of culture (8 days for RA004) whereas others kept producing antimicrobial agents up to 

11 days of culture (RA003).  As shown in Figures 8, 9, 10 and 11, alternating patterns of 

antibiotic activity were observed over time for the PM58B-RA, RA001, RA004 and 

RA003 isolates, which indicates that antibiotic production may increase or decrease with 

time without stabilizing. This may be due to alterations in the metabolic activity of the 

bacteria during growth in the stationary phase (Bibb, 2005). 

 

4.4.4 Inoculation volume  

	  

Previous studies reported that smaller inoculum sizes resulted in higher viable cell 

counts (Casida, 1969; James and Sutherland, 1940). In our study, the 2% seed inoculum 

volumes led to higher rates of growth and antimicrobial activities than 1% seed inoculum 

volumes for all four isolates (Figures 8, 9, 10 and 11). The results of the present study 

show that when the volume of inoculum increased, the production of secondary 

metabolites and bacteria growth increased. This result is supported by Carraturo et al. 

(2014), who observed a positive linear correlation between the volume of inoculum and 

the size of the inhibition zone when studying the effect of serial dilations of phenolic 

compounds derived from the fleshy seed coat of Ginkgo biloba in different volumes of 

inoculum against different bacteria. 

The results of present study are in agreement with Grag and Neelakantan (1981) and 

Hassan et al. (2001), which demonstrated that the size of the inoculum was an important 
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factor in bacterial fermentation processes.  Use of 2% inoculum may decrease the time in 

the lag phase, during which time the bacterial cells need to adapt to the growing 

environment. Therefore, increasing the inoculum size will allow the cells to enter the 

exponential phase or stationary phase more rapidly. Further experiments could be 

performed using a variety of inoculum volumes, such as 0.5%, 2% and 5%, to investigate 

this suggestion. In our study, it appeared that the active compounds from the cave 

bacteria were produced at the earlier stages of fermentation when using 2% inoculum; 

this may be due to the rapid growth associated with a reduced lag phase. In contrast to 

this study, antibacterial production was directly proportional to inoculum size for 

Streptomyces griseus (Nader, 2009), and increase in cell number lead to higher 

production of antibacterial compounds by Streptomyces clavuligerus and Aspergillus 

nigar (Demain and Jermini, 1989; Berovic and Loger, 1993).  
 

4.5 Classification and identification of the cave isolates 
	  

Classification and identification of the four isolates were based on their 

morphology, 16S rRNA gene sequencing and MALDI-TOF MS. A chemotaxonomic 

method was also employed to identify the amino acids of the four isolates; however, 

RA001, RA003, RA004 and PM58B-RA were difficult to classify using thin layer 

chromatography. LL-diaminopimelic acid, a vital part of S. griseus peptidoglycan, can be 

used to determine the similarities to other bacteria; however, none of the isolates 

exhibited separated spots of the whole cell hydrolsates or sonicated cell samples (Figures 

17, 18, 19 and 20). As a result, the morphological and chemotaxonomic analysis 

demonstrated that the four isolates were not actinomycetes; they could be typical bacteria 

or new species. RA001, RA004 and PM58B-RA isolate are gram positive bacteria and 

have a thick peptidoglycan layer whereas RA003 is a gram negative bacteria. TLC may 

be an important method for determining the cell wall structure of these isolates but this 

method was not accurate and was time consuming; however, TLC may be used 

successfully in combination with other analytical methods such as electrophoresis or ion-

exchange chromatography (Grushka and Grinberg, 2009).  
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The resolution of the isolate spots may be affected by humidity and temperature 

in the lab as this technique is an open procedure (Fair and Komos, 2008). The silica gel 

plate may be affected by the high humidity in the lab which could lead to pricking of the 

surface of the gel, even though the silica was covered with a clean plastic plate to avoid 

the effects of high humidity (Fair and Komos, 2008). For example, this technique should 

be performed at less than 60% relative humidity; however, the atmosphere of Kamloops 

reaches 66% relative humidity. The RA003, RA004 and PM58B-RA spots also streaked 

and did not separate into single spots, possibly due to the use of highly concentrated 

samples. On the contrary, the RA001 spot was not visible, possibly due to the low 

concentration of the sample for this isolate. In future experiments, dilution of the isolate 

solutions may help the substances to move and separate, and solve this problem (Fair and 

Komos, 2008). Classification using TLC is based on some chemical properties of 

bacterial cell walls; in this case, we used a limited TLC protocol that will reveal cell wall 

components specific to steptomycete and actinomycete bacteria.  This may be a reason 

why this specific TLC is not a good technique for classifying isolated cave 

microorganisms other than actinomycetes. 

In previous studies, genus Arthrobacter agilis and Bacillus licheniformis were 

found in the Cave of Bats in Zuheros, Spain, where the average temperature ranges 

between 8 to 14°C (Leo et al., 2012). Kampfer et al. (2002) found Sphingopyxis terrae in 

a wastewater treatment plant. Cheeptham et al. (2013) suggest that the communities of 

microorganisms in each cave are unique; however, researchers have attempted to find 

common features shared by the bacterial communities of many caves. Northup et al. 

(2011) suggested that caves could be a rich source of microbial phyla such as 

ctinobacteria, acidobacteria, and proteobacteria. Microorganisms from the same phyla are 

frequently discovered in different caves. Cheeptham et al. (2013) and Northup et al. 

(2011) suggested that a combination of culture-dependent and molecular based 

approaches should be employed to better understand the bacterial community of caves. It 

is clear that the presence of certain types of microbes is not limited in to certain types of 

cave, and it is possible that the isolates in this study could also be found in other caves 

throughout the world.  
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MALDI-TOF MS confirmed the identification of isolates obtained using 16S 

rRNA gene sequencing, demonstrating that that MALDI-TOF MS is a useful 

complementary technique for bacterial identification. For example, RA003 was identified 

at the genus level by 16S rRNA gene sequencing; however, RA003 was identified to the 

species level with MALDI-TOF MS.  

In this study, MALDI-TOF MS proved to be a rapid technique for identification 

of the four isolates. The preparation of samples from the four isolates for MALDI-TOF 

MS using direct transfer and by formic acid method was generally complete within one 

hour. In contrast, 16S rRNA gene sequencing sample preparation usually takes several 

hours to one day. The 16S rRNA gene sequencing in this study was performed by the 

Biotyper 2.0 database in Seoul, Korea and it took more than two weeks to obtain the 

results. However one major drawback of MALDI-TOF MS is that the certainty level in 

the identification is lower than that of 16S rRNA sequencing. Another drawback is the 

lack of reference spectra for environmental isolates in the database; therefore, 16S rRNA 

was found to be more reliable for the identification of bacterial species.  

In conclusion, use of a combination of molecular and software techniques to 

identify bacteria may lead to more reliable results. This study indicates that MALDI-TOF 

MS may be a useful tool for bacterial identification, especially for bacteria isolated from 

cave habitats. In addition, MALDI-TOF MS is a rapid method for identifying 

microorganisms grown on agar media (but not necessarily liquid media).  

 

4.6 Assay of the antimicrobial activity of the isolates against each other 

  
To survive in such environments, bacteria may produce antimicrobial compounds 

that inhibit the growth of other microorganisms, which enables them to survive and thrive 

in such a extreme habitat in a cooperative manner. The antimicrobial activity of the four 

isolates against the other three isolates was tested using the paper disc diffusion assay and 

cross-streak assay. 
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The aim of this study was to determine how cave isolates communicate through 

their metabolites and to preliminarily screen bacterial cave isolates to see if they 

produced known or novel compounds. Different methods can be employed to detect 

antimicrobial activity, such as diffusion methods through solid or semi-solid media 

(Lertcanawanichakul and Sawangnop, 2008). The cross-streak assay technique is a 

simple and rapid method for screening and searching for new antimicrobial compounds 

(Pereira and Kamat, 2011). 

Montano and Henderson, (2013) reported that the cross-streak assay method was 

used to examine the antimicrobial activity of cave isolates against various tested 

microorganisms. The cave isolates were streaked in single vertical lines onto HT agar and 

R2A agar plates and incubated at 25˚C for 48 h, in order to obtain a thin line of growth. 

Subsequently, another layer of R2A and HT medium was added over the first layer of the 

medium on the original R2A and HT plates, and the media were solidified. Then, each 

cave isolate was horizontally inoculated onto its vertical streak, the plates were incubated 

at 25˚C for 48 h and the zones of inhibition were evaluated. In this study, several 

problems occurred with the cross plate assay. Firstly, the bacteria grew in swirl 

formations on the second layer of agar, making it difficult to obtain a conclusive result. 

Changing the incubation time may help to overcome this issue, as cave bacteria are 

generally slow growing and the cross-streak assay requires a short incubation time 

(personal communication with Elizabeth Montano). Secondly, it was found that the 

thickness of second layer was crucial for accurately assaying antibacterial activity by agar 

diffusion. Studies have demonstrated that it is difficult to obtain quantitative data using 

the cross streak assay, as it produces fuzzy and unclear inhibition zones (Pereira and 

Kamat, 2011). Pereira and Kamat (2011) used a ‘modified cross streak method’ to 

quantitatively evaluate the effect of actinobacterial isolates against a number of 

pathogens. In the present study, the paper disc diffusion assay was more sensitive for 

assaying the antimicrobial activity of the isolates against each other than the cross-streak 

assay. In the paper disc diffusion assay, the PM58B-RA isolate inhibited the RA001, 

RA003 and RA004 isolates (Table 9).  
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Table 9 shows the inhibition zones for each of the four isolates against one 

another and also against Streptomyces griseus, which was used as our positive control 

standard (this isolate was purchased from the ATCC). PM58B-RA killed RA001, RA003 

RA004 and Streptomyces griseus, suggesting that RA001, RA003 and RA004 had not 

been exposed to PM58B-RA and Streptomyces griseus before, so RA001, RA003 and 

RA004 may not possess any possible protection mechanisms against the active 

compounds that PM58B-RA produces. However, RA001, RA003 and RA004 did not 

inhibit the growth of PM58B-RA and Streptomyces griseus, suggesting these isolates 

may have been exposed to each other in the cave habitat and developed some protection 

mechanisms that prevent them from being rid of by these strains.  These possible 

protection mechanisms must have been developed overtime and may lead to possessing 

of antibiotic resistant genes in those bacteria.  This observation is in agreement with 

Forsberg and colleagues (2012) who described natural environments as reservoirs of 

antibiotic-resistant genes in which the genes can be transferred between soil bacteria and 

clinical pathogens. However, in the cave, where the microorganisms used for the 

screening in this study are not present, the antibiotic-resistant genes may only be 

transferred between the soil bacteria present in the cave, enabling them to become 

resistant to each other. 
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Appendix 
 

Appendix A- 1- Growth media  

Hickey Tresner (HT)                                                                            

1.0g Yeast Extract 

1.0g Beef Extract 

0.02g CaCl2	  

2.0g N-Z Amine 

15.0g Bacto Agar 

pH 9.0 

1L De-ionized Water 

 20µg/mL Nalidixic Acid 

 

V-8 Juice 

10.0g Dextrin V8 supernatant     200.0 ml 

CaCO3                       3.0g 

dH2O                        To 1L 

pH                             6.0 

Yeast extract           0.1g/L    

Source of V-8 juice; Western Family Low Sodium vegetable juice was centrifuged at 10.000 rpm 
for 10 minutes to isolate the supernatant 

 

Actinomycete Agar (Act) 

2.0g Sodium Caseinate 

0.1g L-Asgargine 

4.0g Sodium Propionate 
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0.5g K2HPO4	  

0.1g Magnesium Sulfalte 

0.001g Ferrous Sulfate 

15.0g Bacto Agar 

5mL Glycerol 

pH 8.0 

1L De-ionized Water 

20µg/mL Nalidixic Acid 

 

Starch Casein Nitrate Agar (SCNA) 

10.0g Soluble Starch 

0.3g Vitamin Free Casein 

2.0g Sodium Nitrate 

2.0g Sodium Chloride 

2.0g K2HPO4	  

0.05g Magnesium Sulfate 

0.02g Calcium Carbonate 

0.01g Ferrous Sulfate 

15.0g Bacto Agar 

pH 8.0 

1L De-ionized Water 

20µg/mL Nalidixic Acid 

 

Humic Acid Vitamin 

1g Humic Acid 

1.0g Yeast Extract 
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0.5g NaH2PO4 

1.7g KCl 

0.5g MgSO4 

0.02g CaCO3 

15.0g Bacto Agar 

pH 7.0 

1L De-ionized Water 

20µg/mL Nalidixic Acid 

 

International Streptomyces Project #2 (Yeast-Malt 

Extract) 

Yeast Extract1 4.0 g       

Glucose  4.0 g 

Malt Extract3 10.0 g 

dH20 To 1 L 

pH         7.3 

 

Hickey- Tresner Media  

(HT) 

Yeast Extract1      1.0 g 

Beef Extract2          1.0 g 

N-Z Amine A3       2.0 g 

Dextrin3               10.0 g 

pH                           7.3 

 

R2A Media 
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0.5 g of yeast extract,  

0.5 g of Difco Proteose Peptone no. 3 (Difco Laboratories),  

0.5 g of Casamino Acids (Difco), 

 0.5 g of glucose,  

0.5 g of soluble starch,  

0.3 g of K2HPO4,  

0.05 g of MgSO4 X 7H2O,  

0.3 g of sodium pyruvate,  

and 15 g of agar per liter of 

 laboratory quality water 
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Appendix B 
 

 

 

Flow chart 1: Extraction and isolation of RA004 strain using Revesed Phase HPLC.  
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Flow chart 2: Extraction and isolation of PM58B-RA strain using Solid Phase Extraction (SPE). 

 

 

 

Flow chart 3: Extraction and isolation of RA003 strain using Solid Phase Extraction (SPE). 
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Flow chart 4: Extraction and isolation of RA004 strain using Solid Phase Extraction (SPE). 

 

 

Flow chart 5: Extraction and isolation of RA001 strain using Solid Phase Extraction (SPE). 
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RA003 Mycelia 

 

Freeze Dry 

 

 

RA003 Mycelia Dry Sample (580mg) 

 

Exreacted with MeOH (25 mL x 2) 

  

RA003-MeOH Extract (160 mg) 

 

 Solid phase extraction  

                (SPE, Discovery DIC-18,6 mL tube, 1 g 

 

H2O (50 mL)                                                                                             MeOH (50 mL)    

 

RA003-MeOH Extrac                                                                         RA003-MeOH Extrac 

Fraction-1 (44.2 mg)                                                                               Fraction-2 (5.0 mg) 

             

Flow chart 6: Two fractions of secondary metabolite of RA003 isolate After removing water-
soluble chemicals from the culture media. 
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Appendix C- Isolates sequences from using 800R and 518F 
primer. 
 

PM58B sequences from using 800R primer 

>130423-29_C05_PM58B_RA_800R.ab1 787 

CGCGGCCCTCAGCGGTCAGTTACAGACCAGAGAGTCGCCTTCGCCACTGG 

TGTTCCTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCCACTC 

TCCTCTTCTGCACTCAAGTTCCCCAGTTTCCAATGACCCTCCCCGGTTGA 

GCCGGGGGCTTTCACATCAGACTTAAGAAACCGCCTGCGCGCGCTTTACG 

CCCAATAATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTG 

GCACGTAGTTAGCCGTGGCTTTCTGGTTAGGTACCGTCAAGGTACCGCCC 

TATTCGAACGGTACTTGTTCTTCCCTAACAACAGAGTTTTACGATCCGAA 

AACCTTCATCACTCACGCGGCGTTGCTCCGTCAGACTTTCGTCCATTGCG 

GAAGATTCCCTACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTC 

CCAGTGTGGCCGATCACCCTCTCAGGTCGGCTACGCATCGTCGCCTTGGT 

GAGCCGTTACCTCACCAACTAGCTAATGCGCCGCGGGTCCATCTGTAAGT 

GGTAGCTAAAAGCCACCTTTTATGATTGAACCATGCGGTTCAATCAAGCA 

TCCGGTATTAGCCCCGGTTTCCCGGAGTTATCCCAGTCTTACAGGCAGGT 

TACCCACGTGTTACTCACCCGTCCGCCGCTGACCTAAGGGAGCAAGCTCC 

CGTCGGTCCGCTCGACTTGCATGTATTAGGCACGCCGCCAGCGTTCGTCC 

TGACGGGGAAAACACCATATATATAAATTTCCCCCCC 

PM58B sequences from using 518F primer 

>130423-29_A05_PM58B_RA_518F.ab1 964 

CGGGGAATTATTGGGGCGTAAAGCGCGCGCAGGCGGTTTCTTAAGTCTGA 
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TGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACT 

TGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTA 

GAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTG 

ACGCTGAGGCGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTA 

GTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTT 

AGTGCTGCAGCAAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAA 

GACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATG 

TGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTC 

TGACAACCCTAGAGATAGGGCTTCCCCTTCGGGGGCAGAGTGACAGGTGG 

TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA 

ACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAA 

GGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCAT 

CATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGGCAGAACAAA 

GGGCAGCGAAGCCGCGAGGCTAAGCCAATCCCACAAATCTGTTCTCAGTT 

CGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATC 

GCGGATCACATGCCGCGGGTTGAATACGTTCCCGGGCCTTGTACACACCG 

CCCGTCACACCACGAAGAGTTTGTAACACCCGAAGTCCGGTGAGGTAACC 

TTTTTGGAGCCAGCCGCCGAAGGTGGGACAGATGATTGGGTGATAGAAAA 

GGGGGGGGGGGGGA 

 

RA001 sequences from using �800R primer 
 
> �130423-29_ �G03_ �RA001_ �800R.ab1 763 
 
GGGCTTTTCGCTTCTCAGCGTCAGTTACAGCCCAGAGACCTGCCTTCGCC 
 
ATCGGTGTTCCTCCTGATATCTGCGCATTTCACCGCTACACCAGGAATTC 
 
CAGTCTCCCCTACTGCACTCTAGTCTGCCCGTACCCACCGCAGATCCGGA 
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GTTAAGCCCCGGACTTTCACGGCAGACGCGACAAACCGCCTACGAGCTCT 
 
TTACGCCCAATAATTCCGGATAACGCTTGCGCCCTACGTATTACCGCGGC 
 
TGCTGGCACGTAGTTAGCCGGCGCTTCTTCTGCAGGTACCGTCACCCACC 
 
CAAAAGACAGGCTTCTTCCCTACTGAAAGAGGTTTACAACCCGAAGGCCT 
 
TCATCCCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATA 
 
TTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGT 
 
GTGGCCGGTCACCCTCTCAGGCCGGCTACCCGTCGTCGCCTTGGTAGGCC 
 
ATTACCCCACCAACAAGCTGATAGGCCGCGAGTCCATCCAAAACCACAAA 
 
AGCTTTCCACCAACATGGCATGCGCCAGAAGGTCGTATCCAGTATTAGAC 
 
CCGGTTTCCCAGGCTTATCCCAGAGTCAAGGGCAGGTTACTCACGTGTTA 
 
CTCACCCGTTCGCCACTAATCCCCCCACAAGTGAGGTTCATCGTTCGACT 
 
TGCATGTGTTAAGCACGCCGCCAGCGTTCATCCTGCGAAAAAAAAAAAAA 
 
AAAAAAAAAANNN 
 
RA001 sequences from using �518F primer 
> �130423-29_ �E03_ �RA001_ �518F.ab1 968 
 
TCCGGGGAATTATTGGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCT 
 
GCCGTGAAAGTCCGGGGCTTAACTCCGGATCTGCGGTGGGTACGGGCAGA 
 
CTAGAGTGCAGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCG 
 
CAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTCTCTGGGCTGTAAC 
 
TGACGCTGAGGAGCGAAAGCATGGGGAGCGAACAGGATTAGATACCCTGG 
 
TAGTCCATGCCGTAAACGTTGGGCACTAGGTGTGGGGGACATTCCACGTT 
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TTCCGCGCCGTAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCG 
 
CAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGC 
 
ATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCAAGGCTTGACATG 
 
AACCGGAATGATGCAGAGATGTGTCAGCCACTTGTGGCCGGTTTACAGGT 
 
GGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG 
 
CAACGAGCGCAACCCTCGTTCCATGTTGCCAGCGGGTTATGCCGGGGACT 
 
CATGGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAA 
 
TCATCATGCCCCTTATGTCTTGGGCTTCACGCATGCTACAATGGCCGGTA 
 
CAAAGGGTTGCGATACTGTGAGGTGGAGCTAATCCCAAAAAGCCGGTCTC 
 
AGTTCGGATTGAGGTCTGCAACTCGACCTCATGAAGTTGGAGTCGCTAGT 
 
AATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACAC 
 
ACCGCCCGTCAAGTCACGAAAGTTGGTAACACCCGGAAGCCGGTGGCCTA 
 
ACCCCTTGTGGGAGGGAGCCGTCGAAGGTGGGACCGGCGATTGGATATAG 
 
AAGGAAGAGGGGGGGAAA 
 
 
RA003 sequencing from using 518F primer 
> �130423-29_ �I03_ �RA003_ �518F.ab1 1006 
 
TTCGGGGATTTACTGGGCGCGTAGAGCGCACGTAGGCGGCTTTGTAAGTC 
 
AGAGGTGAAAGCCTGGAGCTCAACTCCAGAACTGCCTTTGAGACTGCATC 
 
GCTTGAATCCAGGAGAGGTGAGTGGAATTCCGAGTGTAGAGGTGAAATTC 
 
GTAGATATTCGGAAGAACACCAGTGGCGAAGGCGGCTCACTGGACTGGTA 
 
TTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTG 
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GTAGTCCACGCCGTAAACGATGATAACTAGCTGTCCGGGCACTTGGTGCT 
 
TGGGTGGCGCAGCTAACGCATTAAGTTATCCGCCTGGGGAGTACGGTCGC 
 
AAGATTAAAACTCAAAGGAATTGACGGGGGCCTGCACAAGCGGTGGAGCA 
 
TGTGGTTTAATTCGAAGCAACGCGCAGAACCTTACCAGCGTTTGACATGT 
 
CCGGACGATTTCCAGAGATGGATCTCTTCCCTTCGGGGACTGGAACACAG 
 
GTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCC 
 
CGCAACGAGCGCAACCCTCGCCTTTAGTTACCATCATTTAGTTGGGGACT 
 
CTAAAGGAACCGCCGGTGATAAGCCGGAGGAAGGTGGGGATGACGTCAAG 
 
TCCTCATGGCCCTTACGCGCTGGGCTACACACGTGCTACAATGGCGGTGA 
 
CAGTGGGCAGCAAACTCGCGAGAGTGCGCTAATCTCCAAAAGCCGTCTCA 
 
GTTCGGATTGTTCTCTGCAACTCGAGAGCATGAAGGCGGAATCGCTAGTA 
 
ATCGCGGATCACCATGCCGCGGGTGAATACGTTCCCAGGCCTTGTACACA 
 
CCGCCCGTCACACCATGGGGAGTTGGGTTCACCCGAAGGCGTTGCGCTAA 
 
CTCGCAAGAGAGGCAGGCGACCACGGTGGGCTTAGCGACTGGGGTGAATC 
 
TACAAAAGGAGGACCCCACATATATAAAGGGGAAGGAACGCGCGGGGGGG 
 
TGTATC 
 
RA003 sequencing from using 800R primer  
> �130423-29_ �K03_ �RA003_ �800R.ab1 707 
 
AGGCCGGTTCATTACCAGGTCCAAGTGAGCCGCCTTCGCCACTGGTGTTC 
 
TTCCGAATATCTACGAATTTCACCTCTACACTCGGAATTCCACTCACCTC 
 
TCCTGGATTCAAGCGATGCAGTCTCAAAGGCAGTTCTGGAGTTGAGCTCC 
 
AGGCTTTCACCTCTGACTTACAAAGCCGCCTACGTGCGCTTTACGCCCAG 



126	  
	  

 
TAATTCCGAACAACGCTAGCTCCCTCCGTATTACCGCGGCTGCTGGCACG 
 
GAGTTAGCCGGAGCTTATTCTCCCGGTACTGTCATTATCATCCCGGGTAA 
 
AAGAGCTTTACAACCCTAAGGCCTTCATCACTCACGCGGCATTGCTGGAT 
 
CAGGCTTTCGCCCATTGTCCAATATTCCCCACTGCTGCCTCCCGTAGGAG 
 
TCTGGGCCGTGTCTCAGTCCCAGTGTGGCTGATCATCCTCTCAGACCAGC 
 
TAAAGATCGTCGCCTTGGTGAGCCTTTACCTCACCAACTAGCTAATCTTA 
 
CGCGGGCTCATCCCTGGGCGATAAATCTTTGGTCTTACGACATCATCCGG 
 
TATTAGCACGCCTTTCGGCGAGTTATTCCGAACCCAAGGGCAGATTCCCA 
 
CGCGTTACGCACCCGTGCGCCACTAGACCCGAAGGTCTCGTTCGACTTGC 
 
ATGTGTTAGGCATGCCGCCAGCGTTCGTTCTGAGAGAAAAAAAAAAATTA 
 
AAAAAAN 
 
RA004 sequencing from using 518F  
> �130423-29_ �M03_ �RA004_ �518F.ab1 978 
 
GCGGTTTTCGGGATTATTGGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGC 
 
GTCTGCCGTGAAAGTCCGGGGCTTAACTCCGGATCTGCGGTGGGTACGGG 
 
CAGACTAGAGTGCAGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAA 
 
TGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTCTCTGGGCTG 
 
TAACTGACGCTGAGGAGCGAAAGCATGGGGAGCGAACAGGATTAGATACC 
 
CTGGTAGTCCATGCCGTAAACGTTGGGCACTAGGTGTGGGGGACATTCCA 
 
CGTTTTCCGCGCCGTAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACG 
 
GCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCG 
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GAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCAAGGCTTGA 
 
CATGAACCGGAATGATGCAGAGATGTGTCAGCCACTTGTGGCCGGTTTAC 
 
AGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT 
 
CCCGCAACGAGCGCAACCCTCGTTCCATGTTGCCAGCGGGTTATGCCGGG 
 
GACTCATGGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGT 
 
CAAATCATCATGCCCCTTATGTCTTGGGCTTCACGCATGCTACAATGGCC 
 
GGTACAAAGGGTTGCGATACTGTGAGGTGGAGCTAATCCCAAAAAGCCGG 
 
TCTCAGTTCGGATTGAGGTCTGCAACTCGACCTCATGAAGTTGGAGTCGC 
 
TAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGT 
 
ACACACCGCCCGTCAAGTCACGAAAGTTGGTAACACCCGGAAGCCGGTGG 
 
CCTAACCCCTTGTGGGAGGGAGCCGTCGAAGGTGGGACCGGCAATGGATA 
 
TAGAAAAAAAAGGGGGAGGGGGAAAAAA 
 
 
RA004 sequencing from using 800R primer 
> �130423-29_ �O03_ �RA004_ �800R.ab1 764 
 
GCCTTCCTCCGCGGTCAGTTACAGCCCAGAGACCTGCCTTCGCCATCGGT 
 
GTTCCTCCTGATATCTGCGCATTTCACCGCTACACCAGGAATTCCAGTCT 
 
CCCCTACTGCACTCTAGTCTGCCCGTACCCACCGCAGATCCGGAGTTAAG 
 
CCCCGGACTTTCACGGCAGACGCGACAAACCGCCTACGAGCTCTTTACGC 
 
CCAATAATTCCGGATAACGCTTGCGCCCTACGTATTACCGCGGCTGCTGG 
 
CACGTAGTTAGCCGGCGCTTCTTCTGCAGGTACCGTCACCCACCCAAAAG 
 
ACAGGCTTCTTCCCTACTGAAAGAGGTTTACAACCCGAAGGCCTTCATCC 
 
CTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCC 
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ACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCC 
 
GGTCACCCTCTCAGGCCGGCTACCCGTCGTCGCCTTGGTAGGCCATTACC 
 
CCACCAACAAGCTGATAGGCCGCGAGTCCATCCAAAACCACAAAAGCTTT 
 
CCACCAACATGGCATGCGCCAGAAGGTCGTATCCAGTATTAGACCCGGTT 
 
TCCCAGGCTTATCCCAGAGTCAAGGGCAGGTTACTCACGTGTTACTCACC 
 
CGTTCGCCACTAATCCCCCCACAAGTGAGGTTCATCGTTCGACTTGCATG 
 
TGTTAAGCACGCCGCCAGCGTTCATCCTGAGCCTGACCCAAAAATTCAAA 
 
AAAGACCGCAACCC 
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Appendix D- Actual mass spectrum of RA003, RA001, RA004, 
PM58B-RA isolate  
 

1-1: Similarity of mass spectrum of database with RA003 isolates. 

 

1-2:  MALDI-TOF MS detected RA003 isolate at species level that had the high log score of 
identification (yellow circle). 
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Appendix E: 1- 1H NMR of active fraction RA003E0102 
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2- LC/ MS of active fraction RA003E0102  
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Appendix C- (continued) isolates’ sequencing results.  
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